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PREFACE

These volumes are designed to provide scientific workers with a
self-contained and unified development for many of the mathematical
functions which arise in applied problems, as well as the attendant
mathematical theory for their approximations. These functions are
often called the special functions of mathematical physics or more
simply the special functions.

Although the subject of special functions has a long and varied
history, we make no attempt to delve into the many particulars of
Bessel functions, Legendre functions, incomplete gamma functions,
confluent hypergeometric functions, etc., as these data are available
in several sources. We have attempted to give a detailed treatment
of the subject on a broad scale on the basis of which many common
particulars of the above-named functions, as well as of others, can be
derived. Hitherto, much of the material upon which the volumes are
based has been available only in papers scattered throughout the
literature.

The core of special functions is the Gaussian hypergeometric function
oF, and its confluent forms, the confluent hypergeometric functions
F, and ¢. The confluent hypergeometric functions slightly modified
are also known as Whittaker functions. The ,F; includes as special
cases Legendre functions, the incomplete beta function, the complete
elliptic functions of the first and second kinds, and most of the classical
orthogonal polynomials. The confluent hypergeometric functions include
as special cases Bessel functions, parabolic cylinder functions, Coulomb
wave functions, and incomplete gamma functions. Numerous properties
of confluent hypergeometric functions flow directly from a knowledge
of the ,Fy, and a basic understanding of the ,F, and ,F, is sufficient
for the derivation of many characteristics of all the other above-named
functions. A natural generalization of the ,F is the generalized hyper-
geometric function, the so-called ,F,, which in turn is generalized by
Meijer’s G-function. The theory of the ,F, and the G-function is
fundamental in the applications, since they contain as special cases
all the commonly used functions of analysis. Further, these functions
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van PREFACE

are the butlding blocks for many functions which ar¢ not members
of the hypcrgeumemc family

The class of h serses and and G-I
considered m these volumes are functions of only a smgle varable
Known of such hyy senies and functio
mclude basic P sefies N two
or more vanables and G (unchons o( two or more vanablcs These
and other possible have many

but are not taken up here 1 view of space reqmrcmcms Fi unher, the
theory of approxtmations for the above named generalizations analogous
to that for functions of a single variable remains to be developed fully

Volume I develops the oFy, ,Fy, ,F,, and the G functions Volume
II 1s mamnly d with app of thesc by series
of hypergeometric funct; with on
1n sertes of Chebyshev polynamlzls of the first kmd and with the
approximations of these functions by the ratio of two palynomm]s
Ve call the 1n the above Cheb
*Chebyshev coeffi * Tables of Chebyst for
sperial funchions are gaven i Volume 1T There we also present coeffic-
tents which enter into rational approximations for certan special
functions

‘The present work 1s primarnily intended as a reference tool However,
much of the matenial can be used as a text for an advanced under-
graduate or graduate course in the specsal functions and their approxtma-
tions A two-semester course could be based on the matersal 1y Chapters
I V and selected topics m Chapters VIII-XI The usual mathematical
topics up to and including the restdue calculus of complex varrable
theory are a prerequisite Proofs of many of the key results are given
1n detail or sketched In a few cases the reader 1s referred to other
sources for proof Often, results are simply stated without proof as
they follow essenvially from previous results Thus opportumtes for
exercises are plentiful

In a work of thus type, special precautions have been taken to ensure
accuracy of all formulas and tables It 15 a pleasure to acknowledge
with thanks the valuable assistance rendered by Mrs Geraldine Coornbs
and Miss Rosemary Moran 1n the preparation of the mathematical
tables I am partrcularly grateful to Miss Moran for her assiduous help
n proofreading and 1n prepaning the bibliography and dices In spite
of all checks imposed to ensure accuracy, it ts not reasonable to believe
that the text 1s error-free 1 would appreciate recerving from readers
any criticisms of the matertal and the 1dentification of any errors

To acknowledge all sources 1o which some debt 15 due 15 virtually
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impossible. The bibliography is extensive. For a critical reading of a
large portion of the manuscript and numerous suggestions leading to
improvement of the text I am indebted to my colleagues Dr. Wyman
Fair, Dr. Jerry Fields, and Dr. Jet Wimp. It has been most rewarding
to have worked with these same colleagues on many technical papers.
Finally, I am pleased to thank the typist, Mrs. Louise Weston, for
her painstaking efforts and devotion to detail in the expert preparation
of the manuscript.
YupeLL L. LUke
Kansas City, Missouri

October, 1968
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INTRODUCTION

To indicate the extent and scope of the present work, and to identity
its point of view, a synopsis of the chapters is presented. ‘ \
Chapter I is devoted to the elements of asymptotic expansions, while
Chapter II takes up the gamma function and related tunctions. 'The
oF, is studied in Chapter I1I. There the ,F, is also introduced because
many results valid for the ,F, arc merely a notational change of results
for the ,F, . This chapter contains two special features, One is o section
on the confluence principle giving conditions so that nontrivial results
known for a ,F, can be readily extended to deduce results for an I,
r < p, s < q. The other feature is the development of Kummer-type
relations for the logarithmic solutions of the differential equation
satisfied by the oF, , quadratic transformation formulas assoctated with
the logarithmic solutions and evaluation of these solutions {or special
values of the argument. The features just noted and other relations
appear in book form for the first time. Chapter IV studies confluent
hypergeometric functions. It is shorter than Chapter 1 since many
results for the confluent functions readily follow from those for the 4/ .
The generalized hypergeometric function ,F, and the G-function
are the subject of Chapter V. This is a rather long chapter, and by far
and large, most of the material has hitherto been available only in
research papers, Topics covered include clementary propertics, multi-
plication thcorems, integral transforms of the G-function, scrics of
G-functions, expansion theorems, asymptotic cxpansions of the (-
function, and specialization of these results to the asymptotic expansionn
of the ,F,. Results on the G-function arc most important since each
expression developed becomes a master or key formula from whieh
many results are readily deduced for the more common special functions,
In the applications it often happens that one might know the nmme
of a special function, for example, Struve’s function (we call this a
“named function™), and would like to know of its propertics, It is,
therefore, important to identify Struve’s function as a ., More
generally, it is convenicnt to have an index so that a named function
can be identificd as a ,F7, or as a G-function, On the oth”™™wud, <

xvi}



xnll INTRODUCTION

a ,F, or a G-function, we would find 1t helpful to know whether 1t 1s
one of the well known named special functions To assist the applied
worker, we have compiled a hst of formulas which serve to identify
the ,F, and G-function notation with the named special functions
These ate presented w Chapter VI There we also grve thhout proof
some key prog of Bessel Lommel the
complete gamma function and related functions

Asymptotic expansions of the F, for large parameters 15 the subject
of Chapter VII The matenal sclected for this chapter 1s taken from
various research papers and 1s largely governed by results needed in
the deselopment of the approximatons studied m Volume 11

Key properties of the classical orthogonal polynomaals are set forth
1 Chapter VIII These are given without proof, since almost all the
results are special cases of data given for the ,F) 1n Chapter IIl Topics
pertinent to the app of fi are p d Specal
emphasis 15 ptven to the and of m the
expansion of a given function n series of Chebyshev polynomials of
the first kind Minumax 2pp (that 1s, bcst pp:
1n the Cheb sense) are d and \mh the corres-
ponding truncated exp 1n series of Chebysh Is of the
first kind The latter are best i the mean square sense Differentral
and integral ct of such are d A nesting

dure 15 developed to evaluate exp Iy a sertes of

where the functions satisfy a lmcar ﬁmte difference equation Thus,
expansions n senes of orth Is can be evaluated 1n a
manner closely akin to the tcchmque used to sum an ordmnary poly-
nomal The di | and tegral p of n sertes
of Chebyshev polynomuals of the furst land together with the nesting
procedure for their eval 15 most for the
since one can operate with such expansions directly as one does with
ordinary polynomuals without first converting such expanstons to an
ordinary polynomial

The first elgh! chapters constitute Volume I In Volume II, expansions

! functions and G-fi 1n series of

funcnons of the same kind 15 the subject of Chapter IX As specral
cases we delineate expansions of all the common special functions
previously noted 1n serres of Chebyshev polynomuals of the first kind
These results form the basis for the development of the numencal
values of Chebyshev coefficients which are given 1 Chapter XVII
Expansions for many of the special functions tn series of Bessel functions
are also listed in Chapter IX

Study of rational approximations begins 10 Chapter X There the
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r-method is introduced and used to get polynomial and rational approxi-
mations for the exponential function. For certain values of free para-
meters, it is shown that the rational approximations coalesce with the
approximations which lie on the main diagonal of the Padé table. Padé
approximations to the solution of the first-order Riccati equation and
to the solution of a generalized second-order Riccati equation are
developed. The results for the exponential function are generalized
in Chapter XI to get polynomial and rational approximations for the
oF, and for a certain class of G-functions. When p = 2, ¢ = 1, and
one of the numerator parameters is unity, by a special choice of free
parameters we recover well-known Padé approximations. These
approximations which are equivalent to the truncated continued
fractions of Gauss are analyzed in Chapter XIII. Padé approximations
for the incomplete gamma functions are detailed in Chapter XIV.

When p < g, the F(2) series converges for all z. But when
p = q + 1, we have convergence only in the unit disk. However, the
function for which the ,,;F (z) series representation is valid only in
the unit disk is well defined for all 2, | arg(1 — 2) | < «. This analytically
continued function is also called ,,,F (2). The polynomial and rational
approximations developed for the ,F (%) converge for all z when
p < g+ 1, except that if p = ¢ + 1, we must have the restriction
| arg(l — 2) | < = Thus, the approximations in the p = ¢ + 1 case
converge in a domain where the ,,,F () series deverges. If p > q + 1,
and the ,F (—=) series does not terminate, then it diverges for all
5 # 0. In this event, the ,F,(—=z) series is the asymptotic expansion
of a certain G-function. If p = ¢ -+ 2, the approximations converge
for |arg x| < /2 (if p = O and one of the numerator parameters is
unity, we have convergence for |argz | < =), and if p = ¢ - 3, we
have convergence for z > 0. The situation for p > ¢ + 2 is not fully
understood. Nonetheless, the information available covers a vast number
of special functions. We previously remarked that for a special ,F;
and its confluent forms, the rational approximations are of the Padé
class. Because both the numerator and denominator polynomials of a
Padé approximation satisfy the same three-term recurrence formula,
it is natural to inquire if our rational approximations for the oFq enjoy
a similar property. The answer is in the affirmative, and this and related
topics are taken up in Chapter XII.

Truncated Chebyshev expansions of Chapter IX are best in the mean
square sense, but are not best in the Chebyshev or minimax sense.
Ff)r virtually all functions of interest in the applications, there is little
difference. The Chebyshev coefficients for expansions of the oIy and
for a certain class of G-functions are members of the hypergeometric
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family and p timates of these coeffi are avalable
Thus a prion eval of the eff of such ap 18
known In contrast the mmmax approximations are not known in
closed form except for a few elementary transcendents Thus, 1n general
fimte algorithms for the desired coefficients are not available and so
they must be found by an steration process Here tabular values of the
function being approximated are required A common way of computing
certain transcendents 1s by Taylor series These are 1n general only
efficient near the pamt abaut which the expansion 12 based Nonetheless,
these expansions have the very desirable feature that the (n + 1)th
approximation follows from the nth approximatton by 2 simple addition
The rational approximations described above have a like charactensstic
A striking wirtue of the Chebyshev coefficients for the ,F, and for a
certain class of G-functions 1s that they obey 2 recursion formula of
finite length (Chapter XII), and further, i virtually all instances this
recursion formula when used n the backward direction can produce
numernical values of these caefﬁmms 1n an efficient manner

For h d by definite integrals,
use of trapezoidal type integration rules provides an efficient scheme
for their computation (Chapter XV)

We have already remarked that expansions 1n series of Chebyshev
polynomials of the first kind can be used 1n 2s natural 2 manner as one
uses ordinary polynomial The same 15 true for
the ratonal Qur phl hy of 15 that
they should be as widely applicable m nature as possible They should
have application not only for evaluation of the functions and com-
putation of zeros of functions, but they also should be useful to get
solutions of d integral eq and to invert
transforms The potenttal of these approvimations 1s tllustrated with
2 number of examples in Chapter XVI

In Chapter XVII, we present tables of Chebyshev coefficients for
many spectal fi of both h 1c and
type For a number of <pecial (uncnons of hypergeomemc type, coeffic-
1ents tn their rational approximations are presented Some other kunds
of coefficients are also given The set of Chebyshev coefficients 1s the
most complete ever assembled Many of these as well as virtually all
the coefficients i the rational approxsmauions appear here for the
first ime




Chapter 1 ASYMPTOTIC EXPANSIONS

1.1. The Order Symbols O and o

Let z and z, be points in a region R of the complex plane. We consider
two functions f(z) and g(=) with g(z) # 0.

If there exists a number 4 independent of z so that | f(2)/g(z)] < 4
for all =z in R, then we say that

() = O(g(=) as z—3, inR, 1)

Often, where there is no confusion, we omit the qualifying statement
‘s — g in R.” The point &, may be at infinity so that we may have
%] — oo with arg & suitably restricted. In illustration, with f(z) =

(1 — cos 2)/z and g(3) = 3,
(1 — cos 2){z = O(z) as =z~ 0,
Also
5(1 —sinz) =0(s) as =z— o0, =z real,
<=0 0<]z]<o, largz] <72 —¢ >0, barbitrary,
e =00 as |z]—>o00, largz|{ <72, ROb) >0
If lim f(s)/g(s) — 0 as & — %, in R, then we say that
S(=) = o(g(=)) as I35, inR. (2)

Thus, for a previous example, we have

(1 —cosz)=o0(z) as z—0.

e = o(s9%) as x| —>c0, jargzs| <72 —¢ e> 0, a arbitrary.
1



2 1 ASYMPTOTIC EXPANSIONS

12 Defl of an Asymptotic Exp:

Tt 1s convenient to first record what 1t means when a convergent power
senes represents the function being expanded If

Fz)= Y azt,  |zl<n [0}
“

e = T ast @
&

then the sertes on the right of (1) represents F(z) for cach fixed z, | 2| <7,
1n the sense that

i (Fs) — Sa) = 0 ®

“Thus for = fixed, we can approximate F(z) as closely as we desire by
§,(s) with  sufficently large Using the order symbols, we have

Fz) = 53)=0@)  |21<r—e >0 @
Fz) — Siz) = ox*), 20 )
Most always, asymptotic series are of descending type We define an

asymptotic power series representation of F(z) as z — @, z 1n some
region R, and write

P~ S ot m oz w mR, ®
&
w1

S = T az, ™
&

if for n fixed,
imz* Ry(z) = hm 2 (F(z) — S(z)) =0 as s> mR (8

That 15, we can make | 21R,(2)| < ¢ with ¢ arbitrandy small and z
sufficiently large, z 1n R Thus for each n fixed, we can approximate F{z)
as closely as we desire by taling = sufficiently large, z in R Alternative
notations are
Fz)= 85(:)+0(=") as z—wo mR, ©)
F(z) = S(2) +of| 2]} as z-> mR (10)



1.3. ELEMENTARY PROPERTIES OF ASYMPTOTIC SERIES 3

In the above F(2) is said to be asymptotic in the Poincaré sense and the
a;’s are the Poincaré coefficients. Asymptotic series are usually divergent,
though there is no reason to insist upon this in the definition.

For an illustration, partial integrations show that

F(a) = s | et dt = S,(2) + Ry(a),

n-1

Su(z) = Z'b(—-)’*k! z*, (11)
R (z) = (—)"n) ze? j io t—m-let dt,

The integral for F(z) is defined for all 2, z 5= 0, | arg = | < #/2. By rotat-
ing the path of integration, see the remarks following 1.4(4), we have

oo expf:(g+arg z))
F(2) = ze* j et dt, —r<l<m |8+argz}<w/2
: (12)
We see that R, (2) = O(| z () for |z|— o0, uniformly in arg z,
largz | < 37/2 — ¢, € > 0, and so

F(z) ~ Y (—)h! zH, lz]—> o0, largz] <372 —¢ >0, (13)

h=0

The asymptotic series is divergent. If z is real and positive, then the
error committed when using S,(2) to approximate F(2) does not exceed
in magnitude the last term in S,(2), and is of opposite sign to this last
term. The error is also smaller in magnitude than the first term neglected
in the series for F(z), and is of the same sign as this first neglected term.

1.3. Elementary Properties of Asymptotic Series

It is easily shown that if F(z) has an asymptotic expansion in R, it is
unique. However, whole classes of functions may have the same asymp-
totic expansion. To illustrate, in the example 1.2(11), F (=) and F(z) + e~*
have the same asymptotic expansion if | arg 5 | < 7/2. Of course, F(2)
may have a different asymptotic expansion in a region other than R.

If as s - oo in R,

F(z) ~ Y apz*, G(z) ~ Y bzt
=0

k=0



4 I ASYMPTOTIC EXPANSIONS
thenas z — co m R,

F(z) + G(z) ~ f nrt,  FE)GE) ~ Y dF
i =1
m
a=a b, d= 3 aby
i

A sunilar resuls holds for division of F(5) by G(z) provided that &, # 0
may be d termwise Ifas 2~ o m R,

P P
Fs)~ ) aat
=0
thenas z — com R,

170 = 0y — ayt-1) dt ~ § ag B — 1) @
. &

1§ Fa) 1 ble and has the asymp P a3 m 1 X6),
and 1f F'(z) has an asymptotic expansion, then as z — o 1n R,

Fle) m — T et &)
=

1 F(z} 13 analyuc, the assumption that F7(z) has an asymptotic expansion
1S ROt necessary

For proof of (1}43), and for a detaled treatment of asymptonie
expanstons and related topics, see Erdelyr (1956) See also Copson (1965),
de Bruyn {1958), Erdelys and Wyman (1963), Evgrafov {1961}, Ford
(1960), Froman and Froman (1965) Heading (1962), Jeffreys (1962),
Launener (1966), Olver (1954), W asow (1965), Wilcox {1964), Wyman
(1964), and references quoted 1n these sources

14 Watson's Lemma

In this volume, we do not 1n gencral discuss methods for obtaining
asymptotic expanstans Ttus is taken up in the references cited However,
1t 15 of mterest to examinc one spectal procedure which ts applicable
when 2 functian is defined by a Laplace mtegral, since this coters many
cases which anse m analysis The result 15 known as Watson’s lemma



1.4. WATSON'S LEMMA 5

Lemma 1. Let f(1) satisfy the following two conditions:

o

@ fy=3 aqt®in=1, 1] <c+3,

L=1

where r, ¢, and 5 are positive.
(b) There exist positive constants M and b independent of t such that

f()] <, |t =e
Then

-~

F) = | : () dt ~ Y aI(kl)zr,

k=1

ls]—> 00, Jargz| <72 —¢ e>0. )
PROOF. Ve see from the hypotheses that given a fixed positive integer N,
we can determine a constant C so that

N
lf(t) — Z agtim~1 l K CtN=1-r)/rght
k=1

holds for ¢ = O independent of the above inequalities between ¢ and .
If
N oc
Fis)= Y | e=aq® n-1dt + Ry

k=170

N
= Z akr(k,r):‘“‘ LN RN N
=1
the result follows once we show that s¥"R.—0 as |z|— o,
Jargs) < =2 — e With 5 = x 4+ 4y,

Ao N 0
Ryt =] [Tt} fi — ¥ aewmaar | < [ estcroronren g
v o =1 e

_ CI(N + 1)ir]
- (.\- — b)h\xn:r

provided that (x — b) > 0. The assumption | arg z | < #/2 — ¢ implies
that » > 's|sine. So (x — &) > 0 if | 5| > besce, and under these
conditions

CII(N + Djr]i s ¥

(I = { sine — d)N-1r

| 5% Ry | < = 0z,

and the lemma is proved.
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We now state and prove a result very much akm to Watson’s lemma
which s 1n 2 form for

Lemma 2. Let g(2) satisfy the followng fwo conditions
(a) £(f) ss analytic wn the sector |asgt| < 6, and

2 = ia‘t‘, 1ty<r
P=1

(b) g(t) = O() umformly 1n argt for some b as { 1|~ ao tn the
sector {arg 1} < 8 Then for

Fls) = J':' e () dt,  R(o) >0

Fls) ~ o) 3. afol™, @
PR
tz]~>a larg{z — &) K72 +8—¢, €¢>0

PROOF  The proof of this statement for | arg(z — 8) < {218 immediate
from Watson’s lemma We now show that the result also holds in the
more extended doman as stated Consder the completely closed
contour C which starts from the ongin O and proceeds along the real
axis to 4 = (R, 0), R > 0, and goes from A to B along a circular arc
of radius R with center at the ongm, angle BOA = ¢, —f < @ < 6,
and then returns to O along the straight lime BO Clearly the ntegral
whose integrand 15 that of F{(z) around € must vamsh Now along the
arc AB,

1= J-"r”t' lo(t)dt = 1R'J’° exp(—R| z — &) exp(ifw + arglz — B)]))
X € exp{ — Rbew) g(Ret) e,
and for R, > R,
< R | " exp{—Ryt & — b | cosfs + arg(z — 8]} dw
o

where M 1s a constant wdependent of R, If | ¢ + arg(z — 8) < =2,
I->0asR— o Hence,as —0 < p < 8,

Fla) = J’:p e Tg(t)dt = f:""rw- 1g(e) dt

= eter | ” exp{—atele}tr-tgzew) dt, 6}
f
Re) >0 faglz— B <248 -c 30
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This shows that the domain of validity of the Laplace integral can be
extended by rotating the path of integration. The hypotheses of Watson’s
lemma for the last integral in (3) are satisfied, and so

xz £
F(z) ~ €0y ajeic® [ exp{—sterw}toti-1 4t
k=0 T o

which leads to (2).
Note that in the example 1.2(11), if we replace ¢ by s(1 + #), then

F) == [ (1 + ) . @)
Now f(t) = (1 - ' = T o (—)t*if | t] < 1, and so

f) =T (-pt i o<

i=0

Thus in the notation of Watson’s lemma, a; = (—)f, c= 1,8 = L
Alsor = 1. If t = 4, f() < 3 < $¢® and in the notation of Watson’s
lemma, 3 = 3 and & > 0, but arbitrarily small. The hypotheses of
Watson’s lemma are fulfilled and we get 1.2(11) for jarg =z | < 72 — ¢,
and by rotating the path of integration, see (3), the asymptotic expansion
is valid in the extended domain [arg s | < 37/2 — ¢, ¢ > 0.



Chapter I} THE GAMMA FUNCTION
AND RELATED FUNCTIONS

21, Defimtions and Elementary Properties

‘The gamma function can be defined by Euler’s integral
Iz = [ etwid, Ri)>0 1
= [e () ¢

or equivalently by the Laplace itegral
= ereta, R >0, RE>O,
o

Rp)=0 of O<R<I @

Ry rotating the path of integration, see 1 4(3), we have

Iz =p J’:‘“ e g ,
[©)]

18 +argp| <n2, R=)>0, [f+agp|=rn2 of O<RE) <!
Partral integratuon of (1) shows that I'(z) sansfies the difference equation
Iz + 1) = 2I(z) (&)
and since I'(1) = I'2) = 1,
Ia+1)=12 n=n &)
It 1s convenrent to introduce the notation

@r=aa+1) (@+k—1). (a,=1 (6}
8
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Then the formulas

(a)x = I'(a + k)/I(a), (D
(@nr = (@ + 1)i(@)n s ®)
_ (=t _ (M)
(@nr = 1l—a_(l—a—n, (—a—n)’ ®
L (@ (1 +k—1
@u =) (=), 7, (10)

are easily proved for integer values of » and k. However, (7)-(9) have
meaning for general values of # and % so long as the gamma functions
involved are defined. The binomial coefficient is defined by

m o n! _ (=M (=)
(k) TR @ =R 21 . (11)

I'(z) can also be defined by the formulas

o nln® — 1 n®
) = lm e Gt rm x0T T35~ T =)
; [(+nad+%4--Qq+d~—HF
"R S T A £ S 29 (L (ol — D]

— 5 [T 1+ 1L + s, (12)
UT(E) = 2 TT [(1 + e, (13)
n=1

where y is the Euler—Mascheroni constant, and

y=lma,, a,=3 kl—Inm (14)

M~

The a,,'s form a decreasing sequence since

1 1 hid
oo o= s 0l =) = = S o s e <o

?f m 2. %, m~l < [p o t7tdt < (m— 1)~ and by summation of these
m'cquzflmcs, it follows that m~! < @, < 1. Thusyexistsand0 <y < 1.
We will prove the equivalence of (1), (12), and (13), but first we note
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from the latter that Iz} 1s analytic everynhere m the bounded complex
plane save for z a negative integer or zero, at which pomts I'(z) has
smple poles The pomt z = o 18 2n essenual singulanty of IY(z)
From (13},
-
1YI{s) = = lum, [up{(l +i4 Alm—tamE [0+ :/n)r‘l"]
L3

=z [ 1’1‘ )

and thus 1s the reciprocal of the first equality 1 (12} Thus (12) and (13)
are the same If 7 15 a posve integer and R{z) > 0, then repeated
mtegration by parts gives
~ nin
L(l B AL T - s e
Now
-
Iz)— by = jo(r' (L~ Py Ve 4 fr‘l' 14,

and the second ntegral approaches 0 as & —+ o0 The same 15 true for
the first integral, see Whittaker and Watson (1927, p 242) or Ramwille
(1960, pp 15-18) Thus the equivalence of (1} and (12) fallows

In place of {12) we can also wnte

B [ 1t
M=l ey G e ~ as
mn view of {7), and this implies that
(-
g ! 9

2.2. Analytic Continuation of F'(z)
We now show how values of I'(#) for z 1n the left half-plane can be

deduced from values of I'{z) for # 1n the right half-plane From 2 1(12)
and 2 known result on an mfinite product {see Capson (1955, p 150)],

(D2 * = —22 [](§ — 2¥at) = ~(spm) sz,
i

ahazer
T {—3) = —(mfz) cscmz m



2.3. MULTIPLICATION FORMULA

Thus also,
Il — ) = =cscwz,
I} + =)'} — 5) = 7secws,
r@) = =,
Further,

| T+ 1+ )] = {(mfsink my)(12 + 392 +2%) -+ (2 + PP,

| T+ 3 + )| = {(wleosh m)(} +33(& +59) - [(n — 37 + 5%

2.3. Multiplication Formula

We now prove that
me-3

I(nz) = Qa)ta-myma=t T1 Iz + r/m),

r=0
which for m = 2 is the duplication formula
I'2z) = 257 () (= + §)fmt = 2%7Y(1).(3). .

For the proof, let

m—1
mms TT I'(z + r/m)

o) — r=0
A=) mI(inz) ’

and combine this with 2.1(15) to write

m1 — DM ypztrim
m™= TT lim (n — D=

rag N (:; -+ r/m)"

—_— 1 mz
m lim (nm — 1) (mm)m
n=x ("’z)nm

Az) =

Now use 2.1(9) with @ = mz and k = m. Thus,

4('.) = lim 7]1""1—1[(" - l)!]mﬂ("’—l)/:{
o e (nm — D

11

@
©)
@

©)
(6)

1

0]
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which 1s mdependent of z and so a constant To evaluate the constant,
put z = 1/m Thus,

mey mt

Ajmy = T] TIGL + rfoi} = [] Film — 1)/,
~ B
m -t
{aQm)it = T[ DomTQL — rfm) = = ./ T1 sn(rrfmy

i ~i

m view of 22(2) Now
. 2em o+ 1= [ — Ze cos(® -+ 2(r — i) + 1}
~1

smce x = exp[£{6 + 2(r — Dojm)), r = 1,2, , m are the {2m) zeros
of the left-hand side of the latter equation Let ¥ = 1 We find that

ol + ) - 2 (2550

and s0 A(1/m) = (2m)-D2m~172 and (1) follows

2.4. The Logarithmic Derivative of the Gamma Function

“This 1 notated as ${z) Thus,
) = @)l = LEIE o Il = ROL RG]
1

Numerous results for §{z) follow by differentiation of formulas for I'(z)
Thus from 2 1(12-13),

¥z) = lim [lnn - )’i(x + B '], @
&
U =~y ~ Vs + 5 s Kz 4+ &)
&

;‘7+(—'~1).i1(k+1)(z+1)]‘ [€)]
=]

Clearly ¢(z) 15 analytic everywhere m the bounded complex plane
except for sumple polesat z = 0, —f, ~2,  Ako

W= -y @



2.5. INTEGRAL REPRESENTATIONS FOR ¢)(z) AND In T'(z) 13

The following are easily proved from results for I'(s); we omit details:

; s+ 1z 1 v L Uz — 1) 4+ #(3),
Yz 4+ m) = Uz + =+ 1)+ + 1 +:=1,2,3,.... &)

g1 +m =144+ +(1n) —y (6)
(=) — Y(—=) = —mcotmz — [z (N
(z) — (1 — z) = —mwcot 7z, (8)
Y3 +2) — Y —2) = ntan7s 9)
m—1
g(mz) = w1 Y (z + kfm) + Inm. (10)
k=0
With 2 = 2 and m = 2, the latter gives
$(3) = —y —2MIn2. (1
This is a special case of the formula
[1a]
W(plg) = —y —Ing — km cot(mplg) + T cos(2mpnlg) In[2 — 2 cos 2mlg],

" (12)
where p and g are positive integers, 0 < p < ¢. The prime attached to
the summation index indicates that if ¢ is even, the last term in the sum
is taken with half weight. For proof, see Erdélyi et al. (1953, Vol. 1, p. 19),
or Nielsen (1965, Vol. 1, p. 20).

If m and k are positive integers or zero,

Jim [YR)I(z — k)] = (=)™**3(m + k), (13)
dim (2)(h(z + k) — (=) = (—m)(1 +m — k) — (1 +m)) if k<m
=(=ymlk—m~—1) if k>m (14)

2.5. Integral Representations for §(z) and In I(z)

Of numerous integral representations for ¢(z), we prove
9= = | et — (1 — eyt dr, Rz >0, (1)
Y) =Ins + [ B = (1 — e ar, Rz >0, (2

$(z) = Inz — 3z — j S =0T = et dn, R >0 (3)
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The formula
inn= j (et — ety 1t [O)
o
folfows by integration of
= - e de
f,

with respect to x from [ to # Use the latter wath x = z + % and (4} 1n
24(2) to get

902 =t [ et — e — 5 esersd ar,

=3
z) = b t et — (1 — et dt
SR (WSRO
- J“r.f(, Lo (L — ety te ey d[]
]
Here, the first integral 1s mdependent of n, and the second integral
approaches zero as n — w This praves (1) Now use (4) with # = =
and (1) to obtan (2) Equation (3) s a simple rearrangement of (2)
Next we prove that
oo
InF(s) = (s~ laz — 2 4 Finf2n) +J" [ — 1) 1~z 1ok 4t T,
o
w2 <l <2 ~(r2 ) <agz<m2—8 (5
From 2 4(1) and (3), we get
o
iz =(z—Yhz—z+1 +f Ayt e = dt — rh(x)l et dr,
s o
M)=Het—1r~21+ 4

Putz = }and use 2 2{4) Let J and { be {* h(f)e~® dt vath 2 = } and
2= 1, respectrvely Then ’

Mor~Q=f—1

Fh(qz e rzdpfmh(z)r i tdt
. f

- f[h(a) —~ D} tetar = r [tie (o0 —1) Yt
Hence,

];_f:[r et — 2y —je Qe 2at

= —J':(uz)p et ')]d:+;f:(rt_e [Ty
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Thus in view of (4), J = (1 —In2)/2and so I = | — § In(27) and (5)
follows for 8 = 0. The more general statement obtains by rotating the
path of integration. Another expression for In I'(2) is

InI(z) = (z — 1) Inz —  + 3 In(2m) + 2 f * [arc tan (¢f=))(e2t — 1)1 dz. (6)

For proof, see Erdélyi et al. (1953, Vol. 1, p. 22).

2.6. The Beta Function and Related Functions

The beta function is defined by
BB = [ (1 1y, R >0, RE) >0, (1)
or in trigonometric form
Blaf) =2 | ;’2 (sin 6)-Y(cos )1 49,  R(x) >0, R(B)>0. (2)

Clearly B(a, B) = B(B, o) and we prove that
B(a, ) = I()T(B)/ I (e« + B)- 3)
From 2.1(1),

T')I'(B) = J:o ettt fw e~"uf=1 dy,
0

In the integrands, replace ¢ by x* and u by 32, and then transfer to polar
coordinates with & = r cos , y = r sin §. Thus, we can write

0

0

- mf2
I(r(g) = 2 J e-rrtrii-ldr ) f cos>~16 sin28-19 40
0

=(f % e-tyrrs1 dt)B(B, «) = I« + B)B(B, «)

~0
which proves (1).
Consider [ (z~' — z)22%-1 dx where C is the contour consisting of

ic semi@rcle !z} =1 in the upper half-plane and its diameter with
indentations of radius e at the points 5 = 0, +1. Let ¢ — 0 and get

w1 + a) 2
P+ + AN + i —pjr  R@>-1 @

lh {sint)redt dt =
Yo
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Now consider fo (27! + 2)52#-1 dz where C 1s the seraircle | 2] = 1
1 the night haif-plane and its diameter with indentations of radus e at
the points z = 0, k¢ Lete ~>0and obtain

- wI(1 +a)
f, iy = G A F I A
Rla) > —1 &)

27. Contour Integral Representations for
Gamma and Beta Functions

We use the notation [i* f(£) df to designate a loop integral where
the path of ntegration C starts at o, encircles the ongin once 1n the
counterclackwise direction, and returns to ¢ We suppose that ao
smgulatities of f(t) except thase at ¢ = Q ate within the contour
If o = —R,R >0, then C may be taken as a line from —R to —r,
with ¢ = e’ the arcle = ref, —7 < 0 < 7, and the line from
—7to —R with 1 = uef* 1 f(1) = 4, then

on -

I etdt = »«e“"’[ etutdy — ot rr"tr' du
- - ,
st J’ " explreterea 0 gg

If R{z} < 1, the third integral goes to zero with 7, and so with the ard
of 2 1{1) and 2 2(2), we have
o+

[T(®) * = wY{snr2)[() —2) = (2) 1f ar agt| <m (I}
Note that each side of the (I entire of x

() rep
Thus the restriction R(z) < 1 may be dropped and (1) 1s valid for all
Replace x by (1 — z) n (1) Then

o4
(s n2)F(s) = }‘ Y Jargt] < m @

e mn)(z) = — j:"', (—t)tdt  farg(—t) < ®

Now consider (2m) 1 [ f(¢) df where B1s a completely closed contour
composed of a line from ¢ — tR to ¢ + R, ¢ > 0, R > 0, 2 line from
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¢ + iR to R, a quarter circle in the upper left half-plane with radius R
and center at the origin, the reverse of the contour C described above
with o = —R, a quarter circle in the lower left half-plane with radius R
and center at the origin, and the line from —iR to ¢ — R.

Again let f(t) = e't=>. Then

iR 0
[ fyde=er [ etu + iR)* du
c+iR c

which goes to zero as R — o, if R(z) > 0. For the integral along the
quarter circle in the upper half-plane with ¢t = Re®®, we get

/2
V= —Rl-7e~in:[2 f exp{—R sin ¢ + iR cos ¢ + ip(l — 2)} do.

0

Now 2/m < (sinp)fp < 1 for 0 < ¢ < #/2. Hence with M a positive
number independent of R,

w/2 /2

[ V| < MR- j exp(—R sin ) dp < M| R~ | f exp(—2Rg/x) dyp,
o 0

V] < =M R-2|(1 — ).

So if R(z) > 0, the integrals taken round the quarter circles vanish
when R — 0. It follows from Cauchy’s theorem that

@iyt [ et dt = @mi) [ " gt g

¢—{m

¢ >0, fargt | < m, 0 < R(z) < 1. 4
From (1) and (4),

(M) = @mi)yt [T ettsd,  ¢>0, Rz)>0, )

where that part of the restriction R(z) < 1 may be dropped by analytic
continuation,

' The 'intcgrals (1)~(3) may oE)e generalized by rotating the path of
integration. Thus consider [__ .« #~le=o!dt where the initial and final
values of arg t are § — # and & - =, respectively. Then

(04)
I(z) = o%(e2= — 1)1 f t2-1p-ot gy
—we'® ’

(6)
T2—d<argo <3m2 -8, S—w<argt<S4m w0, 41, 42,..,
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and upon replacing 5 by {1 — 2), we find that for all values of z,

0n
2me TN = [ e e,
e (7)
w28 <arga<3nf2 —8, S—magt LS+
Now consuder [cf(1) dt, f(2) = =1 — #}7 ?, where the contour C
starts from 2 point B on the real axis between £ =0 and £ = 1 and
consists of a loop around ¢ = 1 mn the positive directton, a loop around
t = 0 1n the positive direction, a loop around ¢ = 1 1 the negative
direction, and a loop around ¢ = 0 m the negative direction, so that /(2)
returns to B with its imtial value Let the loop around £ = 1 be the
kine from Bto 1 — p, the aircle | £ — 1| == p, and the line from (1 — p)
w B, and similarly for the other loops Let p—© Then with the
notation fof(f) de = fi+ 0+ =01 £(5) dr, we have

pinn fm b+i-0}

Blx y) = et — ey 1dr, ®

T Asnmxsmmy

provided that neither x nor y 1s an mteger or zero
Sumilarly, B(x, ) can be represented by single loop integrals Thus,
Bx y) = () 1 m"yﬂ”' =t — 1y 1,
jagt— D <m  Rx) >0, »#£0 £, 42, ©
Bny) = — @) bosems [ "ty — oy 1d,

<
1

lag(—t)l <7, R(y) >0, x£0,%1, 22, 19

In (9), let £ = ¢” so that # = O corresponds to — e with & real and
18| < 72 Then

h
B(x ) = (B}  csemy _f e — 1 Ldo,
—n2 <8 <2
S—w<arg(e* ~ 1) <8+7  RE®) >0  y£1,2,3 ()

28. Bernoullt Poly and N

‘The generalized Bernoulls polynomals B{™'(x) can be defined by the
generating formula
tagat Cn
[y E,HBM’)’ 1) <27 0]
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Since

Bii(x) = Fd; K?-th)u eﬂg,au - 2 ( ) idt**f( i ( :1)021-0

i=0

-2 (}) =l

it follows that B\®(x) is a polynomial in x of degree k. We write
B{™(0) = B{". Thus,

me = g =) |

and so B{® is a polynomial in a of degree k.
If @ = 1, we have the Bernoulli polynomials Bi'(x) = Bk(o.), and if,
further, & = 0, we have the Bernoulli numbers By(0) = . Clearly

B®x) =% and  B(x)= 1. 2)

The first six generalized Bernoulli polynomials are as follows:

BOw =1, BOw=x—% B9 = —art 2221
@y .3.*%5 o 0(30—"'1) _a'*'(a—l)
By(x) = x > a4 7 x g ,
BE(x) = xt — 2ax% + a(3a — 1) a?— a¥a —1) x
s 2 2
+ ﬁ(—)(lScﬁ —30a% + 5a + 2),
BO(x) = &% — §f e a(3a6— 1) 8 — 5a'~’(a4—— 1) x?
3
a(15(13 ~— 30a® 4 Sa + 2) _a*(a—1)(3a* —Ta — 2) ©)
48 96 ’
BEx) = 28 — 3ax° + 5a3a — 1) 4— 1) ad
S5a%a — 1) , |, a(l3a® — 304® + S5a + 2) @
R RN 16
_a*a — 1)(3a* —Ta — 2)
16
4 a(63a® — 315a 4+ 315a® - 91a® — 42a — 16)
4032

For a short table of BiP(p), see 2.11(17).
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Recall that the Bernoullh polynomuals are Bi(z) = By(x) Thus,
Bx)=1 B=zx—1} Bfx)=s—x+}
Bx)= £ — 32 4 52 Bx) = & — 263 4 57— 1/30,
Byfx) = 25— S¥4(2 + 523 — x16, @
Byx) = x5 — 36 4 S¥A[2 — 232 4 142
The Bernoulh numbers are B, = B,(0) Note that B, = 0 when 2
1 odd, £ > 1 Some addinonal values of the Bernoullr numbers are
By= 130, By, = 5/66, e = —691/2730, 5
By =76, By = —3617/510 )
For further tables of Bernoulli polynomials and numbers, see Fletcher

et al (1962, pp 65-117) For a detailed study of Bernoulli polynomuals
and numbers, see Norlund (1954, 1961}

of the pol ls follow directly from the
generating formula Thus m (1), replace x by {z — *) and by —# Then
e ¢t \0 et
L B e R R e
= g “B"’(x).

and upon equating like powers of ¢, we have
B = (Bl — =) 0]

Upon differentiating both sides of (1) with respect to 2, we are led to the
recursion formula

aBE*V(x) = (@ — KB(5) + Ax ~ a}B\(x) [y
The following are easily denved from (U]
BE(e) = (¢ — MBI = (-1 — ), ®
(e = ()8 () ©)
aB{"*(a) = (a — HB{(a) 10
and with the aid of (6),

aBI (1) = (a ~ BBY = a(—)*BE(a) an
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Multiply (1) by itself with a and x replaced by 4 and y, respectively,
and equate like powers of ¢. Thus,

B9 +3) = 1 (¥) BB, (12)
B+ = % (1) B2, 13)
dmBY(x) 3 .

T = Ty B (14)

Leta = k <+ 1 and y = 0 in (13), and combine with (8) to get

(x — D —2)  (x — k) = f%) (k) BDyr, (15)
k-1

@t =T (TN ag
If we subtract (1) from itself with x replaced by x 4 1, then

a a- mnpia k' a—m,
AFW—w@w,Amm=§:;Lﬂw (1

where 4 is the forward difference operator with respect to x. Hence,
k

B +3) =3 (F) BEP i = —r k1, (19)

r=0

#=3 (’:) BEa(x — 1) (v — 1 + 1), (19)

r=0

To obtain a representanon for B{"(x) when a is a negative integer,
replace k by & 4+ m in (17) and set a = 0. Thus,

(—m)y — Rl Amskm — k! Z s (M
BE) = g 4 = g 5 O (%) @ +m —spm (20)
From (14) with m = 1 and & replaced by (* 4+ 1), we have

BE(x) = (& + 1) f o B(t)dt + B, . Q1)
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Ths 1 very conventent to generate the Bernoulli polynomuals when 215
independent of x, provided that the pumbers Bf; are readily avalable
Ve now establish the recursence formula

[tea)/a) (z':_ l) Bayr

B = BB —a 3 o Bl @)

IR )
&= ey
Then upon raking the loganthm of both sides and differenuating, we get

2{t) = s(OA(),

LB,

! » L4
Hy=x+3(~ 7o) = B W - L i

since By,g = 01f 7 > 1 Now
K0y = Bio(x), A=(0)=0 for 130,
HE0) = —(eBy) Qs +2) U0 = BKx),
and upon substireung these quantres mnto
s
Y oy »
2o = 3 () reog o,

which s Letbrutz’s sule, we get {22) As a corollary, we see that when
2 = 2x, B{*(x) = 0 and so by mduction B (x) = Ofor & =0,1,2,. ,
a result which also follaws from (6)

From (21) and (17),
JL B = B ~ Ben e 41, @)
{7 By e = e vy @
In particular, f & = 1,
Bifs o+ 1) — Byl = et ), @3
-
{ Bdd = (26)

Thus from (25) and (6),
B() =By =(—)B., k22 @
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which shows that except for B, , the Bernoulli numbers of odd index
are zero. It follows from (26) and (23) that

m—1

Y = [ Bt dt = [Bura(m) — Buaalith +1). (28)

r=0

The Bernoulli polynomials may be expressed as a Fourier series.
Consider

fcf(z) dz, f(z) = z7%*(e* — 1), k>0,

where C is a large circle with center at the origin and radius (2IV + 1),
N an integer. The points 2, = 27ir,7r = 0, 4-1, 42,... are poles of f(2),
and the residue of f(2) at z,, r # 0, is (2mir)~%¢*"=, From (1) with
a = 1, the residue at z = 0 is B)(x)/k!. So long as 0 < » < 1, the
integral around C tends to zero as N — 0, It follows that

AR &

By(x) = e Y % cos 2arx, >0 0<x<1, (29
r=1
APk + 1) & :
Boa(¥) = -(--)(277()—‘”’5—1)— Y r%-lsin2ery, k>0, 0 <x <15
r=1
k=0, 0<x<1 (30
Thus,

lintoly IS (31)

r=1

By =0, By = (2m)2*

From (1), we readily deduce that

~ Pop— - ( )"zanan 2
Teoty = sz“‘, (2] <, (32)

n=0

tang (=2t — By,
- g B W, oy <o, ()

n=0

resex — 2§ (SN — 2B,
R R zl<m (G4

n=0

- hd ( )nz‘lrl—l(zEn —1 B“ﬂ
Incosz = Bl ) % lz] <w=/2. (35)

n=1
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2.9. The D and § Operators
These conventent symbols are defined by
&= 2D, D = d/dx m
The following elementary properttes are easily proved
5, =v8, b =zdids z=ar o)

@ +a)r = v +a) [’1‘(3 +ag = z’f(l(v-w‘). @

16+ v+ &= D) = sDr (s @
i
Thus from (3)
-1 G-n+lr=—1) (—n+l)=aDw
whech rmphes that
SO =581 (—n+l) [5)

‘The nght-hand side of {5) may be mterpreted as an algebraic quantity,
and with the aid of 2 §(15), we have

me vt W pw s S pms,

SN LSt e e LA @
Using 2 8(19) and (5), we get

= é (:) BEVPDE — .Z; (:) pl-paipnt o™

Thus,
8 =1zD, 8 = D% 4 2D, 8 = 2D+ 32D + 2D,
B = DY + 623D° + T52D? 4+ 2D,
8 = 2D 4 102207 4 252°D° + 153%D% + 2D,
8 = 2D 3 152°0° + 65818 + 902D° + 31520 - 2D
To compute gher powers of 5, wnte

®

= T ik @ _ (M num
T - ()8 ]
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Then operating on both sides of this equation by 8, we find the recursion
formula

b(u+1) b(n) +m4+1— k)b{'l)l , b(") b(_1 =1, b{.”) =0 for k>n

(10)
It can be readily shown by induction that
n b n-m — —m
III(S +a) = Zocp.mszm: Com = 2?(,) (P f_ :— m) Bz(»—tlmst(av);

Crp =1, Cp,p-1 = P‘(L_— + Si(ay),

=== BN =D g s
2 1\*p, 2\¥p/y

¢y 24
Cpn = L 1P D = 3 (i1
RS RSB EL P
+ LL—__z)z(_p_:_Q Sulay) + Sq(a,),
tno = Sy(a,),

where Sy(a,) = 1, and for m > 0, S,,(a,) are the symmetric polynomials

Sol@y) =Y a,ay, @y, e >ty > >,
te{l, 20t} j=1,2,,m. (12)
These polynomials may also be implicitly defined by
k4 r
,-I_} (*+a) = mgo Smay) x>, (13)

U
We can give an alternative representation for the coefficients Cpom

in (11). Let T, (5 + a;) operate on 2%, & independent of z. Then

H (x+a)= Zcp‘,,,x(.\' —D(x—m 4 1),

§=1 m=0

= (1fml) 4™ H (x -+ a,)

i=1
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Since

(timty am ’['](x +a)|
1

=amyaniE s, o,
= it 5, So-gen [t 5, o]
% P
wn view of 2 8(20), we bave
an= PR - CLF OOk T+
an= R a)ons (7 1)

m the notation of 3 2(1) Since A™x® = 0 for m > p,

wn{mry

4

0, m>p {15

2.10 Power Series and Other Expansions

2101 Power Series Expansions

From the second form of 2 4(3), we have
- H 1
Het D=y 3 (- ) ]
and so by differentiation
S £ ) = dogla 4 e = (P T (s R m >0 ()
“
Thus

WG+ 1) = 3 (-PSeH,  Ja <1
S=—=y S=Frt k=23, ®
2

Yot D= T (psaty gzr<t @
Z
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For references to tables of S, , see Fletcher et al. (1962, Vol. 1, p. 84).
We note from 2.8(31) that

s, = (22 By(0)

ok == 208)] , k>0 (5)

Thus
P'(1) = S, = =°/6, Sy = /90, S; = 7%/945, etc. (6)

The function S, is a special case of the Riemann zeta function

(=) = i nz, R(z) > 1. 0]
n=1
Let
UM+ 1) = 3 a®,  a=1, |2] < w. (®)
k=0 .

Take the logarithmic derivative of (8) and compare with (3). Then

¥ (ko Dt = (5 )% (-5,

k=0 k=0 k=0

and upon equating like powers of =z, we find

ra, = Y (—)1S.a,_; . %)
k1
In a similar fashion, if
TFr41)= Y bzt by=1 |z]<], (10)
k=0
then
rh, = — ’:}: (—)18b, (11)
S
Clearly
Y ab=0, r>1 (12)

k=0
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From {10),
TE+h—3 We+n= i[b.r(*)*Z r* ‘]z', lz)<m (13)
=) =3 =1

The coefficients a; and the Taylor senes coefficrents for I'(z 4- 3),
which are easily derived from the a,s, are given to 20d wn Chapter XVII,
Table 6 These have been rounded from 254 tables which were developed
using the 324 values of S, given by Peters (1957) The latter 254 tables
were then employed with the aid of 8 4 2{15) 1o get coefficients for the
expanston of I'(x + 3) and the reciprocal of I'(x + 1) in serses of the
shifted Chebyshev polynomtals of the first kind, vahd for 0 < = < 1
These coefficsents rounded to 204 are presented 1n Chapter XVII,
Tables § and 7, respectrvely

2102 Cuepysuev ExpansioNs For In I'(z) anp Its DerivaTives

Here we apply the developments of 84 1(19, 20) [sec also Wimp
(1961)] to densve expansions for In I'(s) and its derrvatives m senes of
shifted Chebyshev polynomuals of the first kind From 2 5(1),

P(a) = (o f': el ) R >0, m>0, (I)

50 that tf
P ay= T OO, 0gx<l, @
k=
€7 = evexplin(n — /22yt ¥expl~(2a + 1K1 — e¥)t, efeit,m)
®
Since
N1
(L= ) 2= F o2 (] o2yt 2y @
=
we find that C{™ can be represented by the infinste series
OF = —A-pe L), n+m>0, (5)
=3

where
m an * — 1)
@) = h‘m:[ :;:‘P_ ,)m)] L p=2iza,
_ {=)(m + m)t 2meme
=T bty 2

—mmed) 1~ cothg)
ary T
#=cosh ©
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The coefficients C&™ are tabulated in Chapter XVII, Table 8, for
a = 3 and m = 0(1)6. We also give coefficients for In I'(x -+ 3). It is
of interest to briefly describe how these coefficients were obtained.
It is readily seen that the series in (5) converges very slowly for # and m
small. Even for moderate #» and m the convergence is not too rapid.
However, the situation can be remedied in part by use of the Euler-
Maclaurin summation formula [see Steffensen (1950)]. In this manner
we computed C{™ form = 3and n = 6(1)26 to an accuracy of about 28d.
To evaluate C{™ for m = 3 and n = 0(1)5, we made use of known
values of 3)(z) and its integrals to write six equations involving the
above six coefficients. The coefficients C{™ for m = 0, 1, 2 and the
coefficients for In I'(x + @) were evaluated by successive integration
of (2) with the aid of 8.6.1(7). The coefficients C{™ for m =4, 5, and 6
were determined by differentiation of (2) [see 8.6.1(6)]. In all the
computations 28d were carried. The integration process produced
essentially no loss in the accuracy. However, each step of the differen-
tiation process produced a loss of about three decimals. The coefficients
were rounded to 204 for presentation in Chapter XVII, Table 8.

2.10.3. AN ExpansioN For I(z 4 1)

The following development is due to Lanczos (1964). We start with
2.1(1), replace = by 5 + % and ¢ by (z + o + §)(1 — In v) where o is
arbitrary except as noted below and o is the new variable of integration.

Thus,
Dz + 1) = (= + o + 3 exp[—(z + o + D] F(),

(1)
F(z) = j [0l —lno)l~tordv, R(z + o+ 3) > 0.
0
Next, introduce the transformation
(1l —Inv) = cos?d,  dv/df = sin 20/In v 2
where v = 0, 1, and ¢ correspond to 6 = —=/2, 0, and #/2, respectively.

Thus,

Fe) = | _'/ cos™ 0f(6) d,  f(6) = (2v°sinB)/Inv, R(x+o-+3)>0. (3)

To_compute F(z) in an efficient manner, expand f(6) in a Fourier
cosine series. This series is simplified since the transcendental equation
in (2) implies that v can be written as a convergent power series in
cos* 8 = (1 + cos 26)/2, so that only cosine terms of even index appear.
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Tn this Fourier series, express cos 2k0 i powers of cas § fsee 8 5 1(7)]
and then use 2 6(5) to get

I(z + 1) = 20z + o + D+t exp[~(z +o + §)] i aH(z),
=

Retot+h>0, (4

: -

= () e~ 3 () ( )(")'(y+o+g) ’
w=l, =2 for k=12, (5

HiH=1 HD=f+Dz+t
(F(=2) _ 2z=1) (@—k+1) ©
G+l GFOGTD GTA

Ve also have

H(s+ 1) _ (1 Hio(z) _ _z~k »
H{D G+ R HE  =¥E+1

Nate that if 715 a posiuse integer, (4] tenminates m view of (6] and we
find

(=)—n) (20) expln + o + !
3G e = g ®

which affords an alternative method for the evaluation of the g,’s
Indeed, 1 practice we found (8) more efficient than (5) From the
asymptotic nature of I'(z) for z large, we deduce that

Yea=1 )
i
1f m (4), we put = = 1 — %, then
2l + s + 1) 3 % = RV (7 4o, an
=
and for # = O and n = 1, we have the respective equations

k)ifo(f)‘g. =271 )

S (g, | tem
L woT T az)

which are useful for checling numerscal values of the g,'s
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From the theory of Fourier series [see, for example, Zygmund (1959)],
the series for F(z) and hence also for I'(z + 1), converges for all z,
R(z + o + %) > 0. Notice that the infinite series portion of (4) mimics
the poles of I'(z -+ 1). That the infinite series is slowly convergent is
to be expected for though sin 8/In v [see (3)] has a limit when § — —=/2,
its derivative there is infinite. The role of o in the expression for f(6) is
to smooth out this irregularity. Thus the larger we take ¢ > 0, the
smoother f(f) and some of its higher derivatives. The magnitude of the
coefficients g, increase with o and more terms in the series are required
before reaching the stage where the g;’s fail to diminish rapidly. If we
truncate the series nearly where the g.’s begin to level off, we can
expect to achieve good accuracy in the right half-plane. Now the
maximum error incurred when f(f) is approximated by 2 terms of its
Fourier series, call it £,(f), occurs near § = —x/2, since for this value
of 8, f() fails to be analytic. Thus,

ra = mas|f(6) — ful®) ~ 20, py =2V — ¥ (—Yig,. (13)

h=0

If S,(z) is the error in the infinite series portion of (4) truncated after
n terms, we find that

(s + 1) = @n)13(z + o + B+ exp[—(= + o + 1)] [Z £ff=) + & "(”)] ’

Rz 4o+ 1) >0,
s +1) | T + 1)
+D ITE+1)’
xr = R(z) > 0.
This estimate is found to be quite conservative in practice. For ¢ = 5,
the coefficients g are recorded to 204 in Chapter XVII, Table 9. There

we also tabulate p, and offer other comments on the accuracy of the
approximation to I'(s 4 1).

(14
[ Sal) < Un(p),  Upe) ~Vo(e) ==

2.11. Asymptotic Expansions

If we combine 2.5(5) and 2.8(1), and use Watson’s lemma (see 1.4),
then with the aid of 2.1(3), we get

InI'(z) = (3 —1)Ins — z 4 3 In(2n)

+ 2 Bul(2k — 1)(2R)s%-1-1 4 O(z-2n-3), (1)

k=1
fargs | <7 — ¢, e > 0.
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This 18 equivalent to

r = ety i+ 5+ 3~ 4 o),
targzi<m—e e>0, @
or
1 3
(a) = oy [exp l—z Hr—Phst %u[l — S+,
lagal€r—e €>0
Barnes {1899) and Rawe (1931} have shown that
Wl +a)=(@E+a—Dlaz—z+ihn2e
+ £ e o, @
)argz] m—e £>0.
If @ = }, B,{a) varushes if k 1s 0dd, see 2 8(6) and
s+ ==a(las—1)+}jn2r+ 2 . TRk ,.0) ="”+D(z-"‘ 1,
3

lagz|<n—¢ >0

An clementary proof of (4) communicated 1o me by J L Fields
follows From (1), if a 1s bounded, we can wnite

lnl‘(z+n)~(:+a—;)ln:—:+§b12n+(:+n~*)ln(l+;)—a
5 By
Lo
lnl‘(‘f¢)~('+ﬂ-¥)h=~=+ihlw+§%@f
uniformiy 1n 4, a near zero, for [arg(z + a)l < 7 — ¢, € > 0, where to
camplete the proof, Py(a) must be dentified as By{a) Now
iz + o) = {dfdz) In Iz + 0} = {(d daY In IXz + a)

Performing the indicated opcrmons 2nd equathion bike powers of z, we
have Pofa) = 1, Py{a) = @ — 4 = By(a) and

(d da)Py(a) = kPy_y(a)
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Since P,(0) = By, it follows by induction from 2.8 (14) that Py(a) = B;{a).
‘We have the limiting forms,

lim ez I(z) = 2=, largzs | <w—e €>0, (6)
lim ete¥| y -2 I(x + iy)] = (2743,  w,y real @)
lyl-e

Differentiating (1), (4), and (5), respectively, gives
n-1
W) = Inz — (20)7 — 3. Bya%2k + O(z~27),
i~ ®)
largz | <7 —¢ €>0,

n-1 3
(_)H’I‘Bk-ﬂ(a) R 2 § n—1
1,[1(z—|—a)=1n..,—k=0————————k+1 b+ + O(z-"Y),

€)
fargz | <7 —e¢ €>0,
o — ,_,___ﬂ—l B“k+2(1/2) o—2k-2 —2n—2
Ue+1) = Iz — 3 Tl ones 4 O, "
largz | <7 —¢, >0
From (2),
I’(z-}—a)_wb[1+(a—b)(a+b—1) (@ —b)a—b—1)
T'z+8 ~ 2z 2422
X {3a+b— 1 —a+b—D] I + 063, )

largz| <7 —e¢ >0

We now present a generalization of (11) due to Tricomi and Erdélyi
(1951) [see also Nérlund (1961)]. Thus,

Dz+a) NN (PBE @b —a) o, oy
Te+o) ~° L Kl T ATOETD,

larg(z +a)l <7 ~¢  €>0,

where @ and b are bounded complex numbers and B{*?)(q) is the
generalized Bernoulli polynomial (see 2.8). If 6 — a2 =1 — N, then
(12) is exact. That is, we can ignore the O(z~) term and the restriction
on arg z. Further, if 6 — @ is a positive integer m, and z > max{] a |,
| & — 1]}, then with N — oo the power series is convergent and sums
to [(z 4+ a)(z + a-+ 1) (x+ @ + m — 1)]"%. Thus in this case also,
the O(=~¥) term and the restriction on arg = can be omitted. A convergent
factorial &\pansxon for I'(z + a)/T'(= + b) of the same general character
as (12) has been given by Nérlund [1961, Eq. (43)].

(12)
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For the proof of (12) we use 27(11) sith ¥ = s + aandy = b ~a
Then with the ad of 2 6(3) and 2 2(2),

Rezg MestoO[" ey somote
—rR <8< w2 S—mange -1 <8+, (13)
aglz +a) Sm—¢, €>0, b—a®l2},

Now use 28(1) to represent f(z) From the discussion 1n 14, Watson’s
lemma 15 apphcable to the loop mtegral in (13), and termwise integration
with the aid of 2 7(2) leads 1o (12)

Recently, Fields (1966) has shown that

et a) "B — alulz +a— o)
Negp =E et IEEE—
+ (2~ a—pP 0z +a — oY), (4

2p=1+a—-b Jarglz+a) <m—¢, >0,
where BS(s) 15 the generalized Bernoull: polynomal (see28) Note
that this series 15 esseptially an even one The proof readily follows
from (13), which we rewrite w the form
Iz 4+ a) _
T+

(e} = emmpte(er — 1) %

200 [ sean e e,

[2 sinh v/Z]**‘ “

with the same conditions as 1n (13) Next employ 2.8(1} to represent
h(z) and (14) follows upon application of Watsor’s femma and termwise
integration

A short enumeration of B{(p), which are polynomuals 1n p of degree k,
follows

B¥p =1, BOG=-f B - p(5p+x)

BEp) = — i (57 + 2p + 4),
Bi(p) = 35 (1756° + 2105 + 1015 + 18) a8
By = — m [3850* + 7705 + 6715% + 286p . 48],

BiPte) = gl [1 151755 + 52552554 + 7 1571550 + 5315310
+ 207974 + 33168
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To generate further polynomials, use

2k — 1
k1 (2r + 1) Barse
Béz_")(P) = -—2p ——-——-“———B‘(zg-p—) r—2(P)7 (17)
k Z:o 2r 42 k-2

which is readily derived from 2.8(22).

The formulas (12) and (14) are valid even though I'(z 4~ a)/I'(z - b)
has poles at # = —a — n, n a positive integer or zero, if | % | is sufficiently
large, | arg(z 4 @)| < . But the approximation will break down when
used for moderate values of z if z is near one of these poles. To obviate
this difficulty, use the reflection formula for gamma functions to write

I'x+a) sinm(z+b)I(1 —x —b)
I(z+ b)) sinw(z+a) (1 —2z—a)’

and then use the asymptotic expansion for the ratio of the gamma
functions on the right of the latter equation for | arg(—z)] <7 —¢,¢ > 0.

With s = n,a = —x, and b = 1, we get from (12) and (14) useful
expressions for the binomial coefficient. Thus (12) gives

() ~ L 2 o DeBl

n I'i-x) & Rl n® ’

(%) ~ (=) [1 L6 @B A1) @)

] I ( -,\') 2n 24n2 4813 (18)
+ 5;';2)5"4 (15.\‘3 + 30.\72 + 5.‘\7 - 2) + .”]1
and from (14),
(1) m (L0 — o200 & BRI 1y
n I(—x) LR —x2 PT T
AN - (—)"(n — x/2)~t=+1) (%) (x) (5x — 2)
) (=) 1+ A — 527 T 560 (19

+

(x):(35x2 — 42 4+ 16) |
29 03040(n — ~/2)° ]

It is clear that (14) is more powerful than (12). In illustration, suppose

that we put x = —1 in (18) and (19). We get the respective equations
_ (ah)am 1 1 5 2
I STE [ g+ o5E * Toms T O], oo,

(20)
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gaer 1 2 67 180323 20898423
T ENT { T T e T ABy T 208 T BIT
74263 62705 18744094 65055 :
Gy R Yo v T i 9],

y=4n+1, n—» 4o

@y

If £ = 20, use of the first three terms 1n (20) gives = with an error of
038 10-° If n = 10, use of the first three terms 1n (21) gives = with
an error of —0 69 10-9, while use of all the terms in (21) gives » with
an error of 056 1071

Next we turn o a generahization of (12) Let

i) = [1Tes +apfl1 I +8)
i I

TFE g+, y=02 .5 =012,
2nd write

u=i(»~9)+ibl—)':an B=ﬁu7:
F=-Ir=t

@

. >
s=YB—Yw v

=2 =
If p > 0, there exsst computable constants kj such that

wa B 1
2) = @ reere 3|y B 1
hls) = (@) e Er(p,+a+1)+ob'(}ﬂ+u+Nj)"_’

hy=1, 3% @+ N+ =012 , (@4
|zl—00, 'argz| <o —¢ €>0
This may be deduced from (2) [see E M Wnght (1935) and Brasksma
(1963)] We also have for 1 > 0,
. .
My =TI —, ~ﬂ~=)/£[l I~ a4, — a2),
FFA—~b+08, 3=01 ., 1=01L2 ,
) = Qe i
no
x g’g (BT~ gz — o —j) + O] — pz ~a— NP,

2EN =N yDa 1=0,12 , 29
l#] >, |arg{—z) <w—¢ €0,



2.11, ASYMPTOTIC EXPANSIONS 37

o(—32) = (e 2e-Pyg-spute=il(pz 4 1 — )

b

N1 h; 1
8 E& ety O ((—;w—!—m)n)
2t —(1 —b; +9)Bs, j=1,2,q (26)

7 (¢ 4 N + 1)/, i=01,2,.,
|z — o0, largz | <7 —¢ e >0,

[l = (2P fumset Tz )

y Nz—:l d; + O( 1 )i)
S (pst+ 1l —a); (—pz+1 — o)y
x5 —(b; +1)/Bs» i=01,.,4q
s#E(l—a+ N+, i=012,.. (27)
3| — o, largz | < 7 —¢, e > 0.

Note tl?at if in ,k(—=), b; and a; are replaced by 1 — b; and 1 — a5,
respectively, then [,/,(z)]~? obtains.

An important special case occurs when each «; and ; is unity. In this
event, with an obvious change in notation, let us write

28 = [T e + o) / T17G + ps)

j=1 j=0
P q (28)
pP<q B=gq+1—p o=FB—-D2+ Yo~} p-
j=1 §=0
Then there exist computable constants ¢, ,
= o) —
& =, (P: g+1 Pos Pq)’ =1, (29)
such that
N-1 . 1

28o(2) = (2m)u-B1/zgs—o-1

go TPz — o +)) +0 (F(Bz — o+ N))g’

25 —(y+1), j=12,..,p, (30)
3FE~(N+i—@)f, i=0,1,2,., |5]— oo,
jargz | <o —¢ € > 0.

tI‘he ¢’s can be generated by a recurrence formula, but this investigation
is deferred to 5.11.5.
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31 Elementary Hypergeometric Series

A vast body of special fi belong to the hyperg family
or are related to functions of this class To mxroducc the subject, we
record some well-k ry exp For the
function,

=
e=35. lzl<e, m
=
and for the binomial function,
(1 +2° =1+ az +a(a — 1)(=42) +
+al@a—1) {a—k+DEN)+ L Jzl<1 ()
or with the aid of 2 1(7),
© {—ahl—z)
(o= TR ®
i
Put 2 = —11n (3) and integrate Then
(1
iin(l 4 3) = z£+l Z()k()t( 2 <1 @
Again put @ = —1 1n (3), replace by 2% and integrate ‘Thus,
r-mmzszMM si<l ®
Multiply (1) by 5 * and integrate Then
* 3 (@)e*
ar‘fﬂt“’z‘dtsznm, R@)>0 |zi<ow (6)

Y



3.1. ELEMENTARY HYPERGEOMETRIC SERIES 3%

In
cos o = i (=)= sl <o (7
& (R !
use 2.1(10) or 2.3(2) to get
14 -
cos.,—z (1/2)k)‘ ) 2| < oo. ®)
Similarly,
(==24)
a1 o = , =z ! . 9
sin z Eo (3/2) i [zl < o0 )

The Bessel function of the first kind of order » can be defined by the
expansion

(s12) (==%4)*

3) = R z , 10
MO =i 2w oA FI<® (19)

and we immediately see that
cos z = (mz[2)12]_;,4(2), sin g = (wg/2)112 ], 0(2). (11)

In each of the above expansions, the general term is of the form
() (0)x*/ (o) B! (12)

provided we understand that if as in cos %, (), and (v), are not present,
then these quantities are said to be empty and are treated as unity.
Thus for coss, x = —3%4 and w = §. Likewise for z~!arc tan z,
y=—su=190=14% w= 3 In (12), ~ is called the variable.
Also v and © are called numerator parameters while w is a denominator
parameter.

The preceding discussion suggests that we consider the form
Fi(a, b c; 5) = Z [@)®h="/(e),k!]. (13)
Often, as a space saver, we write

-Fi(a, b; ¢; 2) = . F, (a,cb l z), (14)
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and where no confuston can arse, we simply refer to the latter as a ,Fy
Some authors drop the subscripts attached to F However, we shall not
follow this practice In tllustration,

n(l +5) = ,/(1, 1,2, ~3), {15}
tarctanz = Al 1 —2) ()

Affixation of the subscripts to F 15 useful, for (¢ 1s easy to have a notation
for sums of terms hke {12) where only one or no numerator term 18
present or only one or no denofminator term 1s present Thus,

£ (2 1) = e = § st an
and so
aze J’:z«-le' dt = Fa,a+1,3) (18)
Similarly,
oo+ D) = oFi + 1, =314, )
& = Fo(3) = Fi(a, q,3) (20}

In the latter formula as well as 1n (13), if a numerator and denomnator
parameter coalesce, the parameter can be omitted and the subscripts
attached to F are each reduced by umty Thus,

(1 + 3 =Fi(~a,b, b, ~2) = ,Fo—a, —z) (21
Clearly (13} 1s symmetnc in g and & If @ = —m, m 2 posttrve nteger
or zero, then (13} 1s a polynomeal provided ¢ 1s not a negative integer

or zero Thus

Fomb e = B imabation @

An alternative representation for (22) follows by turming the sertes
around Thus,
), (—)
e e L PR R Y
¢ not a negative integer or zero 23

If 15 2 negative integer or zero, say ¢ = —n, and if for conventence to
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simplify the discussion we suppose that 5 is not a negative integer or zero,
then

oFy(—m, b; —n; ) is not defined if n<m, (24)

Fo(—m by —nyz) = Folb; )= (1 —2)y* if n=m, (25)
(—=m)u(B)ss* o (—mu(@)s*

e by i) = § Oy 5 i

k=0 k=n+1

_ (=—m) (b =" o (—m, n4+1— m| ..—1)
o nl I\ l—m—b |”

(n — m)l ml(b),4q(—)mta" 1

ul(n + 1)!
n+1—mn41+4+0b .
X oFy ( o lz) if n>m. (26)

3.2. A Generalization of the ,F,

Instead of discussing the ,F; , .y, etc., we might just as well study
a generalized hypergeometric series with an arbitrary number of
numerator and denominator parameters. We therefore consider

Xy 5 Ko yeeny &,
DFG((!I y Onyeeey Xp 5 Py P2 yeres Po s 2) = pFu (Pll ) Pa yeeey P: z)
¢
= Z H ()= /H (Ph)kk!]- (H
k=0 h=1

The latter is formal in the sense that for the present we do not consider
the convergence of the series. This aspect is taken up in 3.3. Where no
confusion can arise, we simply refer to (1) as a ,F, . It is often convenient
to employ a contracted notation and write (1) in the abbreviated form

o
nFq(o'v;Pq;z)=pFa( ’
Pa

9 = 3 Motk @

Thus F(oz + k) is interpreted as [Tj_; I'(e; + k) (o) @ TTig (g)x 3
w, as TT5. o5, etc. An empty term is treated as umty so that, for example,
if p=2,(ap)r =1 for h > 2. The «,’s and p,’s are called numerator
and denominator parameters, respectively, and 2 is called the variable.
The ,F, is symmetric in its numerator parameters, and likewise in its
denominator parameters. If a numerator parameter and a denominator
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parameter coalesce, then omit the parameter, whence the ,F, becomes
a , 1 Fn The F, senes and, th 152 1 af
a numerator parameter Is a Negative Integer Or zero, provided that no
denonunator parameter 15 a negatwve mteger or zero The results
3 1{23-26) are easily generahized

iy
SR s
(—”', 1

—m
Y

m—cl—m—p,| (=)0
xS T

&
where nesther ¢ nor any p 1 a negative integer or zeso If no p, 152
negative integer or zero, 1f, for convensence, to sunphfy the discussion,
no a 1s 2 negative integer or zero, and if ¢ 15 a negative nteger or zero,
¢ = —n then

I ::lz) 1s not defined f 7 < m, @
—m o,
SN e E R i E R ®
- — )t n
- o) = Cmmk e f“m')”‘
—madtl—m i —m—p,| (=)t
X'"F’( 1—m—uo, 'l z )
4 oo m) gl )it
i + 1) (ke
mt+l—mntl4o
S G L )
16 (3), welet ¢ = —m 4 ¢ compose the finite sums as mndicated, and
then let ¢ — 0, we see that the truncated hypergeometnic series {1) may
be d as a hyp 1 That 1s,
IR S G m b —m—p, 1| (=)t
I (Pa g) .z,:o Gk~ (oot 5 (2 a, | 7 )

7)

where no p, 1s 2 negative nteger or zero ¢
This chapter for the most part deals with the ,F, ‘The ,F; and ,Fy
cases are the subjects of Chapter [V, while the ,F, and a generalization
of the F, are studied 1n Chapter V. However, 1n some nstances where
theorems for a general ,F, differ essentially from those for a ,F) by
notation only, then we state results for the general case 1n this chapter
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It calls for us to remark that the literature is vast with information on
the oF;, J; , and oF; cases. Much less can be said for the general ,F,,
and for this reason one studies the former cases independently of the
latter.

We have already noted in 3.1 some elementary functions which can
be expressed by the ,F; symbol. Other important cases of this family
are Legendre functions (see 6.2.3) and the classical orthogonal poly-
nomials (see Chapter VIII). For ease in the applications, we have
prepared a table of the most common functions of mathematical physics
which may be characterized by the ,F, symbol. Thisis givenin Chapter V1.

Some general sources for material on the ,F, and its special cases are
Erdélyi et al. (1953), Kratzer and Franz (1960), Kuznecov (1965),
Lebedev (1965), Luke (1962a), MacRobert (1962a), Mitrinovié¢ and
Djokovié (1964), Poole (1960), Rainville (1960), Schifke (1963), Slater
(1966), Sneddon (1956), Snow (1952), Watson (1945), and Whittaker and
Watson (1927). See also the references given in 4.1, 6.2.3, 6.2.6, 8.1, and
the references quoted in the handbook edited by Abramowitz and
Stegun (1964). Other useful handbooks are Byrd and Friedman (1954),
Erdélyi et al. (1954). Grobner and Hofreiter (1949, 1950), Magnus and
Oberhettinger (1948, 1954, 1966), Mangulis (1965), Oberhettinger (1957),
and Ryshik and Gradstein (1957, 1965). For descriptions of numerical
mathematical tables embracing the entire spectrum of transcendental
functions, see Fletcher et al. (1962), Lebedev and Feodorova (1956), and
Burunova (1959). See also the handbook edited by Abramowitz and
Stegun (1964) cited above.

3.3. Convergence of the ,F_ Series

We suppose that none of the numerator or denominator parameters of
3.2(1) is a negative integer or zero. Let u; be the coefficient of =¥ in 3.2(1).

Then

;S sk + ) 7—1
== = zkp"q_l —_— -2 l
s (k+ plE + 1) ;1 o O,
D Q
1= =3 (1
A=l h=1

Application of the ratio test shows that the series

converges for all finite = if p g,
converges for [z| <1 if p=g+1, )
diverges forall =, 220 if p>q+ 1.
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Following Bromwich (1949, pp 41, 241) or Knopp (1949, p 401), we can
show that the ., F, series 15
absolutely convergent for |z{=1 1f R(y) <0,
conditionally convergent for {21 =1, s7#1 ff 0K R <1, (3
dwergent for (5] =1 1f 1< Ry

34 Elementary Refations
We mfer from the examples considered 1n 31 that denvatives of

hypergeometric sertes are series of the same kind The following relations
are of thrs type

RN ey o
L=, ol = 6=+ s # by (sifﬁ:jh 3 @

If (8 + 1 — n) 15 a negative integer or zero, a more convement form
of (D15

&[0l
(p..)(:)(n':w b IS T L)) o

Sl 2]

= @ LpFe (7 t:' 1) @
o[ 2o (2 19)]

=f(o e n F{ " \ 3 ®
& [ nn ()

=@ et (E ‘;a8c+¥1b:$: ! ’) [(]

d‘i;; [ 21— zpsanee “ +£n1,‘_bn+ n | B

= (et (1~ 2yt < 5, (0] ) @
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7)

= (¢ — @)pz** Y1 — Z)erb-e-n Fy (a —nb l z).

c
)]
—n,b—
a—n n ‘ z)

— (C —_ 11),,z°‘"‘1(1 — z)u+b-c-—n 2Fl ( R

w0 = (0]2)

c

( - a)n - b)n ~adb—e-n a, b -
== (c§z (1 —=2) :F (c +n ")'

70 =]
= (a1 Dl — 2P

a, b

an
e [zc—a+n—1(1 — z)eHc, Ty ( g

& [ — apereoy (%°

dzn

—n,a+14+8—mnj
at+1l—n |~)’

« not an integer < 7,
dan
& [0 =]

_ (=B)us (1 — 5= ,F, (—s,B +1

(n — ) n—s 41 z),

s an integer, s < 7.

dn
dzn

[zc-l(l — :..)b—c+n 2F1 (a;b

7)

a—mnb
= (¢ — m)yet (1 — )2 oF, ( o z)

s [ =2 (0] 5)]

V@ Ba o (D) )

©)n c+n
N v Lvbp+1) )
@ =2k (70T T )

_ () g A D) doe &

45

®

®

(10)

(11)

(12)

(13)

(14)

Tt TG ) e [ = g — =), (1)

where v, p, A are positive integers or zero. Note that the right-hand side
of (15) gives the analytic continuation of the ,F; on the left throughout
the entire complex plane, the positive real axis from 1 to oo excluded.
Equation (15} is readily proved from (1) and (10) with the aid of 3.1(15).
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Eq (1)~(5) follow by duffe To prove (6), first transform

the 47, on the left usmg 3 8(2) and then apply (1) Equations (N—(12)are

special cases of (6) The proofs for (13), (14) are not so direct We denve

these eq and as a by-product get al proofs of (9), (10)
Tt 1s convement t0 set

1= B 21

We first assume that a 15 not an integer less than # Use (11) with «
replaced by « + & Then

bl b,
R e __(‘zgik); (@Rt

S alat R+ 10+ Bl
Ll S
(16
e 1 S @MU D
Am U e Lo Y e T
k—ml—c—kn—a—f—k
)P L s i s 1)

Ifa =c— landB = n + b — ¢, the ,F, becomes a ,Fy which 1s yeadily
summed vsing 3 13 I(1), and 4 reduces to (13) 1f a =¢—1 and
B=a+#b—c the ,F; becomes a Saalschiitzian 4F, which can be
summed by 3 13 32} This leads to the proof of (9)

Suppase now that « 15 an integer, say s, and 5 < # We could get an
expansion for 4 ke (16) starting from (12) However, the desired
expansion can be abtaimed from (16) 1f there Tx.q 1s replaced by T% n-s
We have

ol g S Drom LBan T+ k)

A=t T T

T A A A A I N )

—a—k—ntsl—b—h-nts—k—n

where the ,F; 18 1o be mterpreted as the sum of the (n + k 4 1 —s) ot
(n + 1) terms whichever 1s least 1f s = Qand f = a -+ n — 1, the ,F5
becomes a ,F; Sum this using 3 13 1(1) whence A gives (14) 13 =9
and f=a 3 b —t, e F; reduces 10 a 4R, winch 1s Sasischizen
Use 3 13 3(2) ta sum the ,F, , and 4 reduces to (10)
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The six functions
2F1(a ’_'h I, b; [ Z), 2F1(a) b :i: 11 [ z)) EFI(ar b; ¢ :t I; Z) (18)

are called contiguous to ,Fy(a, b; ¢; 2). We use the notation ,F,(a+-) and
JFi(a—) to designate the ,F; with a replaced by (a + 1) and (a — 1),
respectively, etc. Gauss proved that between the ,F; and any two
functions contiguous to it, there exists a linear relation with coefficients
which are linear in z. There are fifteen relations of this kind. Only four
of the fifteen are really independent, as all others may be obtained by
elimination and use of the fact that the ,F; is symmetric in @ and b.
In view of symmetry, it is sufficient to record only nine of the fifteen
relations. They are as follows:

(¢ — @) F(a—) + (2a — ¢ — az + bz) ,F; + a(z — 1),F(a+) = 0. (19)
(e — 1)z — 1) oFy(c—)

+efe —1 —2c—a—b—1)3),F + (c — a)c — b)z,Fy(c+) = 0. (20)

cla + (b — €)3],F; — ac(l — 2),Fy(a+) + (¢ — a)(c — b)zF(c+) = 0. (21)

(1 — 2)oFy — ¢ Fy(a—) + (¢ — bz, Fy(c+) = 0. (22)

(b — a)oFy + ayFi(at+) — b,Fy(b+) = 0. (23)

(¢ —a —b),Fy + a(l — 2),Fy(a+) — (c — B)F(b—) = 0. (24)

(c —a —1),Fy + a.Fy(a+) — (¢ — 1),Fy(c—) = 0. (25)

(b — a)(1 — 2)oFy — (¢ — @) Fy(a—) + (¢ ~ b),Fy(b—) = 0. (26)

f[a—140B+1—0)s].0

+ (¢ — a).Fy(a—) — (¢ — I)(1 — 2),Fy(c—) = 0. (27)

Thesc are readily verified by expanding in power series and showing
that the coefficients of all powers of = vanish.

If m, n, and s are integers, then ,Fy(a + m, b 4 n;¢ + 53 2) can be
expressed by repeated application of the contiguous relations as a linear
combination of ,F| and one of its contiguous functions with coefficients
which are rational functions of q, b, ¢, and z.

Formulas (1)~(5) give rise to difference-differential equations. Many
such properties for the ,F; follow upon combining most of the results
in Eqs. (1)~(10) with (19)-(27).

We can invoke the confluence principle [see 3.5(6)] to get recursion
relations for the |F; . Thus in (19), replace = by z/b and let b — oo.
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Then
(¢ @} Ffa—)+@2a—c+2)F) —afat) =0 28)
Simarly,
e 1)iFfe—) +dl —e — ) F + (e —asFe+) =0, (29

and from this we deduce

e — D—oFile—) + oF) + 2 Fi{c+) =0 30
In partscular, see 3 1(19)
Jonalz) + a3} = (2v/2)1(2), (31
and from (1),
=) —vila) = ~zlonlz) (32

Contiguous and di diff for the JF; and Fy
have been given by Baley (1954) Rcsuhs of this type for the ,F, have
been studied by Ramwille (1960, pp 80-85) Recursion and dnﬁercncc
dufferenteal formulas for a form simply related to JFy(—m, 22 + A, 8 + 1,3)
are given tn 82 A recursion formula for a generalization of the latter ts
gven i 122 See Sections 123 124 for the development of recursion
systems for other types of hypergeometnic functions

35 The Confluence Principle

With = bounded,
m (1 — 2jo) = Im expl—o In(i — 2/0)]
= et bm exp{{a20)[1 + Ofzjo)]) = &, [}
and m our hypergeometric notation
bm Fife 2/0) = oFfz) = ¢ 2 bounded @

Ve can get this result from another pomt of view Now the general
term 1 the expansion of {1 — zfo)= 13

vkt = Do + R)2t{I(o)otk! (&)
and from 2 11(11), with k fixed,
him v = (0]
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Thus with = fixed,

lim (1 — zfo)° = lim Y (vstfkl) = ) (s*A!) lim o,
lo}=sw Catede] Far e jo]~»x

™8

SR = . (5)

%

I

0

Again, if in ,Fy(a, b; ¢; 2), 5 is replaced by 2/b, we get a power series in z
whose radius of convergence is | &|. The latter defines an analytic
function with singularities at z = 0, b, and oo [see 3.7(1)]. Let | b | — c0.
The limiting form defines an entire function with a singularity at 2 = o
which is a confluence of the two singularities b and oo of ,Fy(a, b; c; 3(b).
Thus,

lim oFy(a, b ¢ 5/b) = 1Fy(a; ¢ 2 (6)
and the ,F, is a confluent form of the ,F; . For this reason, the ,F, is
called a confluent hypergeometric function. A rather thorough study of

the F; is given in Chapter IV. A natural generalization of (6) is the
statement

lim ,.F (“"'°|x0)= Fo (%
|a|-cc”+1 ] Pq / - e Pq

S @

This limit process is called a confluence with respect to o and the
resulting limit of such a process is called a confluent limit. The impor-
tance of the result (7) lies in the fact that known representations for
p+1lq may be used to deduce similar type representations for ,F, which
do not follow from the former by an obvious suppression of a numerator
parameter.

In (7), the confluence is with respect to a numerator parameter of
the ,,,F, . However, the limit process can be invoked with respect to
a denominator parameter, and it can be proved that

|t1!ll»man pFerr (p:'pﬁ l .B:) = ,F, (::

largBl <7 —38, 0<8<72,

z) p<ag+1],

8

z|{ <R if fargB| < =2, ®)
2| <|sinfargP)| R if =2 < |argB| <m—3,

whcreR:lifp::q—{—landR——:ooifpgq.
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The results (7), (8) are special cases of some general theorems proved
by Fields (1966) We next present a symmary of his findings

Theorem 1. Let

Sas<o I:l<R )
P
Then
Feo) = 3 lafohlbll(ziof,  1alo) <R, o)
Z

and F(z, o) can be rearranged to read
Flz,0) = -fjg,(z)r’. )zla} < R an
=3

That 15, F(z,0) converges for | zjo| < R, where the gz} are entire
functsons of = given exphaitly by (16) below Further, for 3 = 1, g(2) can
be expressed 1n terms of the derteatives of go(z) = g(z)

PROOF  From the rauio test and {9), 1t follows that F{z, o) converges
for |2} < |a!R Foro s 0,k an integer 20,

, s
i =N + M [l +50) = T a0t a2 >0 (19
i &
Clearly F(z, o) 1s majorized by the convergent sertes
IR e SNPIRI L L L P  J 1E)
R & A

"Thus F{(z, ) can be rearranged in descending powers of o and since o 15
arbitrary, the g(z) converge for arbitrary z We next sdentify the oy,
mn (12) From 211{12), with 2 = ¢, @ = k, and & = 0, we have wath
the ad of 2 8(6, 11),

= [(1 — k)/ B 19
Note that
ae=1 of yj=0, k20

[}
=0 of ;21 k=0 or k=1

It follows that
= &S g e
o = ¥ e =proEs LI )

=
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Now for k,j > 1, k1BY is a polynomial in k of order (j — 1). If 4
denotes the forward dlfference operator with respect to k, and m is an
integer >0, the relation

Am(l +J - k)r = (_"r)m(l +J — k)r—m

implies that for j > 1,

w _ I+ =Ry (BY
o SR
Combining (16) and (17), we see that for j > I,
'-—1,,.;. B(.&)
o) — (1+347) r
o) = L Trratrr@ o (5)] (18)

and this completes the proof of Theorem 1.

Since the coefficients of z'+it7g{1+i+)(z) in (18) are independent of
£o(%), the coefficients can be deduced from the special case

S (ol j)(alop},

§=2

F(z,0) = (1 — 3/0)™° = e*exp

g(F) = (19)
The first few g;(2) are as follows:

o) = g5) = 3 @k, gi(s) = (32)g(s),

A=0
&(6) = ) + (H8)g(e), (20)
&(%) = (9/4)g"W(z) + (%/6)g")(=) + (°/48)g'9(2),
84(3) = (3%/5)g¥(=) + (132672)g"(s) + (=7/28)g(=) + (25/384)g'®)(z).
By virtue of Theorem 1 and 3.4(1), we have

O
piafa (7
Pa

S/U) =,F, (::

A, Al9) 1
5) + S22 4 51 (84y() + 34,(2))

+ gas (124,5) + 844(5) + 43) + =L

5760174
X (115244(=) + 10404(5) + 2404,(2) + 1544(s)) -+ -,
) = 3" . (an)r" F 7Y +r o
dJDF ( ) (Pa)r (P,, +r ~)’

P=g lzl<lel; p<g |z|<co. 2y
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Another kind of confluence 1s suggested by the classical relationship
connecting the Jacobi polynormal P #(z) [see 8 2(2)] and the Bessel
function J.(z),

nn + 1), oo (~matatftl
T T @) *F‘( a1 lr‘Mn’)
=[F(1 +a)] *oFif 11+ o —234) = (2/2)](z) (2)

“This 1s 2 special case of the following theorem

fm<Pls (1 — £% ) = hm

Theorem 2 Let
Thit<wm, |zl<R @)
&

Then

G w2y = ZEL’(’L;}&( v(TerT))" |7} < i+ MR, (24)

and G(z, v, N) can be rearranged sn descending powers of (v + X) to yreld
Gl = T Az M~y + A1 (2] <oy + DR (2)
A

where the h(z, )) are palynomuals n X of order 3 whose coefficients are entire
functions of = Further, for } > 1, h{z, X) can be expressed n terms of the
derizatives of bz, \) = h(s)

‘The proof 1s much akin 10 Theorem 1 2nd we omut detarts To construct
ky(z, 2), we wnte

Bz ) = Z b“z kl()") (26)
Now
T Y P
poaar - ORI (e S T+ )
= R+ 2 3t 0+
(I‘L(-v)(vﬂ)) H( + ,,)(,+,\))

N
= T e () + 2] * @
=
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Multiply both sides of (27) by (v — k) + A + k)[»(v + A)]"%, and so

obtain the recursion formula
(A — 6.0(A) = A& + XN, R =0, (28)

and by summation

k-1
craa(d) = Y, mim + N5 md),  Com@) =1, m=0. (29)

m=0

Employing the same type of factorization as used to write g;(2) in terms
of the derivatives of gy(z), we have for the first three ¢; (),

i) =1 .@) = [k — DIk — 2) + 3] + HE(k — DA,
ealA) = 5 [RCk — 1)k ~ 2011200k — 3)(k — 4)(k — 5)
+ 204(k — 3)(k — 4) + 495(k — 3) + 240] (30)
+ é [k(k — 1)(k — 2)J[(k — 3)(k — 4) + 6(k — 4) + 6]

+ s [R(E — 1)k — 2)][3(% — 3) + 8],
Thus,

(=) = k(= Z bR, In(z) = (1 + (EFH2)RP(2) -+ (2°3)h(z),

ho() = (2 + 3X ++ A)(=%3)h (=) + (11 + 8A + A)(=/8)he)(z) @31)
+ (17 4 S)(=°30)h®(=) + (s°/18)hO(z).

Note that Theorems 1 and 2 are related by the fact that when
bk = k! a. ,

gl_{'g G(z, v, A) = F(z, —v). (32)
If in Theorem 2,
by = (eph(Dilleahs (33)
then
Gle,nA) = F. ("' the &
( v ) P+_Fq( Pa v(v + A))’

(34)

e = (2]5), i = dn g (ot

Pq (pa)m = ¢ P + m <)
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and the expansion {25) 1s vahd when
p=g—1 lsl<vp+d), p<g-l [zf<® @3
e next turn our attention to three theorems deahng with asymptotic
confluent expansions We omut proofs and refer the reader to the work
of Frelds (1966) The following 1s a generalizatton of the statement (8}

Theorem 3  Let

f)= Yot <o |zl <R 9
&
Then
TH) = 3 OB @n
&

canuerges for all 5,8 # 0, —1, 2, , and

Te B~ S HN—B ! 1Bl o, Jaghl<n—5, 0<3<a,
=)
13| <R of |agB| <nf2,
{z| <|swagf)|R of =2<|agBi<w—3 39

where the f{(z) are analytic functions | z| < R and are green by (41}
below

For s > 1, f(2) can be expressed m terms of the dervatwes of
Jfo(3) = f(z) Let us wnte
I -
BE=Tl0+8 1= y .87 39
B =3
From 2 11(12)

o CU g

1+k>0,
=1, 1=k=0 @

Also

Hay = zcg( Yrot = ):‘*""13“ . @n
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Now (k);B{*-* is a polynomial in k of degree (2j) and vanishes for
k = 0and k = 1. As in Theorem 1, let 4 denote the forward difference
operator with respect to k. If m is a positive integer or zero, the relation

Al —1 — 1), = (—1)(k — 1 — 1 4 m),_, (42)

implies that for j > 1,

2j-1 {1-1)
a-n __ (k =1 — Dyyo [ 4, ((R):B; .
CUASEESS o vy | R S )
Thus,
2j~2 (k)JB(l-—M

M) =X ].,,f"*“’()['(k(kjl))]k_z, izl @)

r=0

The first few f,(z) are as follows:

fo(=) = /(=) = ZCL v AR) = (F2)F9(),

1) = EDIO(E) + Q3 FOE) + (8)F ),
1i(2) = (2 (E) + 25 9E) + (3542 f ()
+ (3 9(=) + (048) fO(&),
1ie) = D] (e) + (1455/3) FOE) + (615418) F (=) + (625%/15) F)(s)
+ (13128/144) O (z) + (57/12) f 7 (z) + (=4/384) F ©)(z).

(45)

It follows that (8) is the limiting form of the asymptotic expansion,

(' Ay(z
Fy ) = o8 (7| 5) — 252 + 5 (124402) + 164,) + 34,(2)

A (Po ’D B I
-~ 3‘;?5{24A2(3) +9644(5) + T2A (=) + 1644(3) -+ A=)

1
+ 570z (28804(2) -+ 268804,(3) (46)

+ 439204,(s) + 238084,(z) - 52404,(z)
+ 4804,(z) + 1544(z)} + O(B-9),
1Bl—o0, p<yg, JargBl<7—3, 0<8< 2,
P=qg+1 jsi{<l1 if RBY =0
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and
|zl <sns, 0<8§<72 o RP<O,

where A,(3) 15 defincd as s (21)

If 1 an integer 20, the functions F(z, —») and G(z, #, X) defined m
Thearems 1 and 2 are polynomals in z of degree n and so are always
well defined Under weaker conditions than stated, Theorems } and 2
yield the asymptotic expansion of F(z, —n) and G(z, #, A), respectively,
as n — 0 These results are given by Theorem 4

Theorem 4. Let

b};%zx<m, |2 <8, ZW1'<°O. [sl<S§ @n

Then for n an tnteger, n = 0,

_dmlm a3
oo = 225D ~ Detkom h

a0, |z|<S, “8)
and

" X . =
rny =3 Aw’%,ﬁ;;)r(_ ) ~ 3 b Wf—nte + 217,
n— 0, lz] <8 (49)

where the gz) ave analytic1n | 3| < S and are defined by (16), and where
the hz, \) are analytic in | 2| < S and ave defined by (26)

Another confluent 1s given b
Theorem 5 o & ’

Theorem 5. Let
v(z):id,z'(m_ fzl <R 59
=
Then
S(z, @, 2,8) = iM
i

{o+8),
Izl <R o+b3%0,—1,-2, , (&Y

< @,
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and can be rearranged in the region | 3 | < R|[2 to give the expansion

S(z, 0,a,b) = Z (_I,Tr—:-)_lll—)_ﬁ)- vi)(z), [z] < R/2. (52)
i=0

However, if a and b are bounded, then (52) is valid asymptotically in the
larger region | z | << R. Thus, if n is an integer >0,

S(=, 0, a,b) = "io __(_;_ﬁ_)%)_}!l)_' v9(z) + O(o~"),

lo|—c, |aglo+b)<7—38 >0, |z]<R (53)
If [(o + b);)™* is expanded in reciprocal powers of o, then (53) is a
confluent expansion in 1/o.

Note that if (b — @) = —(m — 1), m a positive integer, (52) terminates
and is valid for | x { < R, a result noticed for hypergeometric series by
C. Fox (1927). Theorem 5 includes Kummer’s formula 3.8(3). For
another special case of Theorem 5, see 9.1(34).

3.6. Integral Representations
We first prove Euler’s formula

- (@b I'(c) o e ~
31’1( ¢ , ) m t 1(1 t) 1(1 —zt) bdt,

Re)>R@) >0, lag(l —z) <= (1)
The series on the left converges if | z| < 1, but the integral on the
right is single valued and analytic if |arg(l — 2)| < =, and so the
integral gives the analytic continuation of the ,F;. If | 22| < 1, the
binomial expansion for (1 — 2¢)~? is uniformly convergent and with the
aid of 2.6(1), (1) follows by termwise integration. In the integrand of (1)
replace ¢ by t/(1 + 2). Then

() = T (e y _
«_J‘l l~ “mj‘ot l(1+t)b (l+t—zt)bdt,

R(c) > R(a) > 0, |arg(l — 2)| <, 2)

l—::)

a+b+1—
I‘((Z)P(b +1-0 f (1 + £)e-e-1(1 4 zt) b dt,

R@) >0, Rb+1-0>0, |agzi<m (3)

or

a,b
2F“(a+b+1 —c
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From the differential equation satisfied by the ,Fy [see3 7(1)] the
formula

1R3¢ — 1) — +(8 + a5 + Bt — 1)L — 1))
= —Bgen{r(t — <(l — sty > ®

furrushes an alternative proof of (1) and (3} More generally, 37(1) 13
satisfied by

Jrman f0 = ot — gty 0]

1f C1s exther closed on the Riemann surface of the itegrand or termunates
at the zeros of 11 — fr-o(1 — 1) Expand (1 — at)® by the
binomual sertes and use the contour mtegrals for the beta function
(see 27) to get
@by (et e
A= I — aysm e —a) j, Jma, ©
1f R(8) > 0, {¢ — a) 1s not a positive integer, { arg(l — 2)} <,

abyy v o
A l‘)"zr(a);"(c—a)sm,mj, S Y

if R{c) > R(a), b1s not a positive integer, | arg{—z)] < =,

@ b e)erive {1404 1 0-1
CYNEEE T :—‘5)(:.:,,7 ] f@e ®
1f none of the numbers g, I — ¢, ¢ — 2152 posttive integer, § arg(~-2)! <=
In (6)8), the path of integration begws at 2 point of the Riemann
surface of /(1) [see (S)], £ real, 0 < ¢ < I, and #5, (1 — £)=— denote the
principal values of these funcuons Also (I — zf)= 1s such that it
approaches ] if z approaches 0
The following are generalizations of (1)

e
T
=Bt I, enpstpet (] smtels )
= R cos oyt

%
Pe

:) dr ©

at)ar 10)

sestl)ds,  (12)
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under the conditions
p<g-+1, RB)>0, Re)>0; [z[{<1l if p=g+1

Integrals like the above with ,F, replaced by an arbitrary function are
sometimes called beta transforms. Representations for the ,,,F,., above
may be written as loop integrals [see (20), (21)].

The Laplace transform and the inverse Laplace transform of a ,F,
are also members of the hypergeometric family. Thus,

w/z) = ﬁ% J-:oe—-:tto—-l oFq (::

is valid under the five cases listed below. In each case R(¢) > 0 and
z % 0. It is convenient to set down the following conditions:

a, o

D+1F0 ( Pa

wt) dt (13)

R(O’ — C!j) < 1, j= 1, 21--"?1 (14)
D q

vV = Zah—zph. (15)
k=1 h=1

CASE 1. p < g, |argz| < /2.
CASE 2. p=gq— l,]argz| = 7/2, argw = =, (14), R(4o + 2v) < 3.

CASE 3. p =g, |largz| < 7/2, R(z) > R(w) or R(z) = R(w), 2 # w
and R(c + v») < 1.

CASE4. p=g,|argz| =72, /2 < |argw| < 3n/2, (14).
CASES. p=g,|largs| =|argw| =7[2,2 # w,(14), R(c + v) < 1.

In Cases 3 and 5, we can have & = w if R(c + v) < 0.

The above conditions arise to insure that the integral is convergent
and, aside from the condition R(c) > 0, are derived using the asymptotic
properties of the , F, for large argument [see 5.11 and the statement 5.3(3)].
A generalization of (13) is given by 5.6.3(1). Using the latter, we find
that for sy # 0,

o0
,f(, e-*tte-d F (p"‘p

P
-1

—_ Hps1)5° aptra (2| L oy
’_yt) dt = I(e,) Gron (", o, o:;, ),

R{o) >0, |argy| <wm, Jargz| <=2 or
fargz | =72 and Rle —o5) <1, j=1,2,..,p. (16)
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In (13) and (16) we supposed that z 0 By appropriate use of
Lemting forms we can let 2 — 0 Thus

A e
O<R@<Rx) =12 p 770
g—p+1 Riy+20) <} 7>0
¢ 7 lagni<m2 or fagy =uf2 of Rp+o)<! (7
g=p7 | largnl <=

where v 15 given by (15)
We also have for R(e) > 0 and z # 0,

s (o a :-'l o Mz/,x) T?.T)r:' #o 1 F, "‘: a.*:‘) &t
p<g 2 argz{ <72
p—g~1 (2 R(z) >2|Rw) 20 or
(b) R(z) = 2| R(w)] >0 (18)
Rlo+v) < -} or
© R(z) = R} =0
Rle+v) < —}
Ro 24)<l &k 12 »p
where » 13 2 1n (15)
The nverse Laplace transform 15 given by
(e B )

wreall  w#0 RS0 >0 p<q 9
Also jarg(l —zfc) <mifp— g+ 1

ext we turn to some loop and other integrals 1nvolving the
From 27(9) & e the oFe

R fela)= % [oxe an, (ol

RB>0 p<qg p g+ of Jz|<1 (20)
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and so also

N {2y (T

Oy, g o
D-H.F e+l ( Zm'['(ﬁ)

Pes o + B

an o |
x [ e — 1) 1nFQ(P:l(~t) 1) d,
RB) >0, p<q p=g+1 if |2{<]l (2]

Further loop integrals may be derived using 2.7(8, 10). The following
loop integral is easily proved from 2.7(3). Thus under the conditions
given for (13) but without R(e) > 0,

wfs) = — T2 [ sy, (0

wt) . (22)

o, a
D+1F0 ( qu 2771

Similarly, from 2.7(1),

[+ 4
w1 F ( ?
»*t q+1 pq , ﬁ

where w >0 and p < ¢. Equation (23) is also valid if p = ¢+ 1
provided that the radius of the circular part of the contour (— <0, 0-+)
in the ¢-plane is greater than | z |. This radius is arbitrary if p < ¢. This
radius is arbitrary if p < q.

The integral

J.:+) (—t)"1 Fa (:‘:

wz) _ _1;_5? m“ewet—a F, (a,,

- Pa

z/t) dt, (23)

__2min~I(ey, — a)[p,)
I'(1 — o) () (pg — 0)’

—nt) dt = (24)

is valid under the same conditions as for (17), but without the restriction

R(e) > 0. Also, for 1 # 0,

—C+ieo o 2wty (e, — o)
[ m (] ) de = SR
¢ >0, R(o — o) <0, h=12,..,p,
g =p, 7 >0, Rie +v) <1,
g=p—1 largn | < 72, ¢ < R(1/n), (25)

where v is defined by (15), and under these same conditions
—cHo —n,n 4+ A, vy w o
—t)o-1 —_—— L -
J._c_m( 1 g42Fon ( B+ 1,8, l 7 )vFa (Pa ’7’) dt

- 2miy~el (e, — o} (pg) F ( —n,n4+A vy, 0, —~0
r(l - G)F(ap)F(PQ - G)p+!+2 o B -+ 1) 80 ] 11— Gypg— O

o),
(26)
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ST ARt Rt g B Ko id BT

2oy ~ Y —ny, @y

)
R RN PR L

27)

For generalizations of Eqs (9){27) see 56 @n

One of the most useful representauions for the ,Fy , and indeed for

the JF, as well as a generalizatton of the latter [see 5 2(1}], 15 2 integrat
of the Mellin-Barnes type We consider

TON®) (@b _ > Pla + I + HF(—=2)
@ ’F'(,,- I‘)“(l"‘)' = e+ &

targ(—3) <, %)

where the path of ntegration is indented so that the poles due to I(~—f)

lie to the night of the path while those due to I'(z + ¢} and I'(6 + ¢

Tre to the left of the path Such a contour 1s always possible provided that

neither @ nor & 1s a negatne integer or zero Ve further suppose that

{5 — @) 15 not an 1nteger o zero so that the poles are simple For the

case when this does not hold, see the discussion surrounding 3 10(14, 15)
If U s the integrand of (28), we can write, sn virtue of 2 2(2),

U=~ al{a + O + t){—2)*
e+ 0T + ysin ot
Let 2 = u + 10 on the path of mtegratton Then

12| explet arg(—2)]
sin w4 cosh 7o -7 cos mz sinh 2
explu(in| z |) — v arg(—z}]

T {aw?u coth 1o I cosf musinbd ol

(=3}
Sinwt

Using 2 1}{11), we see that
Ul = Ot T ecplufin] z ] exp{—| v [[» L arg{—2) (29
as? —» 4o on the contour Thus U1s an analytic function of 2 provided
that Jarg{—2)} < w — ¢ where € 13 arbitranly small but postive
Now let
=Qmyt}| Ud
@m [ var

where €15 a semiaircle t the nght of the imaginary axis with center at
the ongin and radius N+ §, N a large posmtive integer Let
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t = (N + %)¢® on C. Then by an analysis similar to that which led to
(29), we have

| U| = O((N + 3)Rte+b=e=1) exp{(N + $)[cos 8 In| = | — ¢] sin 6 |]})

as N — o0.1f | z | < 1sothatln | = | is negative, since —=/2 < 8 < 7/2
and e > 0, it follows that U is an exponential decay whence

lim (V] =0.
Now

By Cauchy’s theorem

J"_m Udt — U_(M” Udz+J'CUdt+J'

-t

100
Uth

(N+1)

equals the negative of (27i) times the residues of U at the points
t=0,1,.,N. As N — oo the last three integrals tend to zero. Since

al(a + N)YT(b + N)(—z)" _ I(a + N)[(b + N)z¥

im (- MU= — N En Dew T+ NN

we get 3.1(13) for | = | < 1. This last restriction may now be removed
by the principle of analytic continuation.
Next suppose that

W = (2mi) f Udt
D

where D is a semicircle to the left of the imaginary axis with center at
the origin and radius N + 8, N a large positive integer, and § is such
that none of the poles of I'(a + ) and I'(6 + t) lie on D. Then by an
analysis used to prove (28), we get

P@ih—a), . _. al+a—c|
I'(c — a) (=) 2Fl(l—}—a—b © )
-+ a like expression with a and b interchanged

— (i) J“x I'(a + f)rgli(j;)f;(*f)(“—z)t dt, | arg(—2)} < , (30)

-1

where the path of integration is as in (28). Coupling (28) and (30), we get
3.9(1), a formula connecting three ,F,’s. This is an important relation
for it serves as the analytic continuation of ,Fy(a, ; ¢; 5) into the domain

where | 5| > 1. A rather complete discussion of analytic continuation
is given in 3.9,
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‘The unique second erder limear differential equation with three isolated
regular singulanties at z =0 1 2nd ¢ can be wntten 1n the form
ol ~ ) D +{e~(a+b+DAD—ablw=0 D=ddz (1)

or by wirtue of 2 9{1)
BE+e—1) 2(+0+Hw—-0 S=zD @
We call (1) or (2) the Gausstan hypergeometnic equation For a discusson
of the second order lmear differential equation with three isolated
regular singulanies located at arbitrary points and related data see

Erdelyt e al (1953) Norlund (1963) and Poole (1960)
Integration of (2) leads to

[(s+;-1)—z(s+b)-z(a—1))w—(a—1)(1:-1)]":»(1)41::—1
° (3)

so that 1f & = 1, w satisfies the first arder nonhomogeneous differential
equatton

[B+e—D—sB+D~

~Dlwe=c—1 @

‘We shall presently show that ,Fy(a b ¢ 2) 1s a solution of {1) More
generally the differential equation

N A N aTSeYery
(e DR g B ol
+ ¥ meurs L prlealy-o "
with = k(z) f = f(z) andy = 3=} s sausfied by
sty = w1 (0 hea)) ®

By the method of Frobemus assume the solvtion of (1) i the form

o 3t n o
&
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Combine (2) with (7) and employ 2.9(3). Then

Y wdfim + R)m +k+ec—1)a* ~(m+k+a)m+E+b) =0, (8)
k=0

The coefficient of 1,3° set to zero is the indicial equation which has two
zeros, which we suppose are distinct. Denote these by m;, , 7 = 0, 1,
so that m, = 0 and m; = 1 — ¢. Equating like powers of z in (8), we get
the recursion relation

v — (% + my + a)(k + my 4+ b) "
MRt my ok tm+ 1)

®)

and so
- (mp + @) (my + )1 u
¥ (my =€)y (mp + D o

U

(10)

For each mj;, we can take u, = 1 and so the linearly independent
solutions of (1) in the vicinity of the origin are proportional to

W = ZFl(ax b; c Z), (II)
and
w, =z ,Fl4+a—cl+b—c2—cz) (12)

provided that ¢ is not an integer or zero. Each series converges for
| 2| < 1, and appeal to 3.3(3) shows that @, and w, are

absolutely convergent for { 2| =1 if Rle +b-¢) <0,
conditionally convergent for |s| =1, 2% 1 f 0 < Rla 4+ b - o<1, (13)
divergent if (5| =1 and 1 < R(a + b~¢).

It is clear that we must enlarge the definition of the solutions of (1)
when ¢ is an integer or zero. First we note that w, is a polynomial of
degree m, a positive integer or zero if either @ = —m or b = —m.
‘Throughout our discussion, since @, is symmetric in a and b, if one of
these is specialized, we will let it be a. If @ = —m and ¢ is a negative
integer, m + ¢ < 1, then a well-defined solution of (1) is

T (@uB)s* _ i’: (—m)(b)z®
P (5011 &y (1 —s)k!

(a,b;¢;2) =

s =1 — m) (B) o™ —m,s —m| _
e (e T ),

c=1-—s5, s a positive integer, m<s, (14)
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and this 1 independent of w2, Likewise, if @ and ¢ are positive integers,
a < ¢, then

S of(lha—el+b—c,2—c3)
S — Dt
= LT

T —myz -
=T yre g A E P ()

2 =m a postive imeger, ¢ = 1 45, 5 A posttve infeger or 7efo,
m < s+ 1, 1 3 well-defined solution of (1) and 1s independent of w,
In (14) and {15), the ,F, notation apphes only when (1 — m ~ &) and
(1 + m — b), respectively, are not negative integers

If a = ¢, wy3) = (1 — 2)™® and a second solutton 15 grven by (12)
provided that a 1s not 2 positve integer When a = ¢, 1t can be shown
that a soluuen of {1} s

w= (1 —a)l — 2 f’ 1ol — e dt (16)

In particular, «f m and # are posiuve integers or zero, and the constant
of mtegration mn (16) 1s 1gnored,

u:r“‘(1~:)"f(m~n)k( z )x’

(—n)p tx—1
c=a=n+2 b=n-—m+l n>m, un

wr {7 : ™) st

w=(t-mi iy T (2 s,
£

) & l-me
EEm L
c=a=m b=mintl 18y
If ¢ 15 @ negative integer of zero, 52y ¢ = —m, 10, 15 undefined In this

event, a solution can be taken proportonal to

2 _ (@Dwia(Bmazt

by = RS R et bt b Lm ot 2,5 (19)
However, this 1s proportional to w,; with ¢ = —m It 1s convement to

defer a full mvestigation of the complete solution of (1} to 3 10
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3.8. Kummer’s Solutions

Kummer’s 24 solutions of 3.7(1) are as follows:

w, = oI(a, by ¢; 2) 1
= (1 — 2)-9b Fy(c —a,c — b; ¢; 2) @
= (1 — 2)7% Fy(a, ¢ — b; ¢; 2[(z — 1)) (3)
= (1 — 2)"? ,Fy(c — a, b; ¢; =/(z — 1)). 4
wy =21, (1 +a—¢cl14+b—c2—0c2) ©)
= z1-¢(1 — 2)e-e-b ,JFi(1 —a,1 —b;2 —¢; 3) (6)
=2l — )1, F(1+a—c1—52—¢z/z—1) ™
= g1 — 2)e -1, F (1 +b—¢, 1 —a;2 —c; z/(z — 1)) ®)
wy = (e, byja+b+1—¢1—2) ®
=g e+l —gb+l—catbt+l—cl—2) (10)
=z9,Fa,a+1—ca+b+1—cl—27 (11)
=20, F(bb+1—ca+b+1—cl—2z7). (12)
wy = (1 — 2)~9 Fy(c —a,c ~b,c+1—a—b;1—23) 13)
=1 —2)~9v F(l —a,l —bjc+1—a—b;1—x3) (14)
= 2971 —2)-ob ,Fi(c—a, 1 —a;c+1 —a—b;1—2z1) (15)
= bl — 2y Fi(c — b1 —bjc+1—a—b;1—~z1) (16)
wy = (z7%'")® JFy(a,a+ 1 —c;a+ 1 —b;2Y) (17)
= (z7tlem)eb(l — z)-ad Fy(1 —b,c —bya+ 1 —b;270) (18)
= (1 =2y, Fla,c ~ba+1—05(1 —2) (19)
= (7)1 — 2) 191 —bya+ 1 —c;a+ 1 —b; (1 — 2)71). (20)
wg = (7Y Fy(b, b+ 1 —e; b+ 1 —a;27)) 21
= (e7le") (1 — ) ~9-d (1 —a,c — a3 b + 1 — a3 27Y) 22)
= (1 —2)?,Fybyc—a;b+1—a;(1 —2) (23)

= (= (L = )0 Ry — g, b+ 1 — b+ 1 — a3 (1 — 2)), (24)
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The formulas (1)-{4) follow by transformatton of the variable 1n 3 7(1)
‘They may also be prosed from the integral representation 3 6(1) There
replace ¢ by (1 — @)1 — «3), 1 — u, and ul{} — z + uz) to get (2),
(3), and (8), respectvely That (3) and (4) are 1dentical follows since w,
18 symmetric 1n the parameters @ and &

In 3 7(1) replace z by (1 — ) whence we get (1) with ¢ replaced by
(¢ + 5+ 1 — ¢) Thusnthe neighborhood of 3 = |, linear independent
solutions of 3 7(1) are proportional to {9)and (13) provided (¢ + b+ 1 — ¢)
1s Tot an anteger or zero  As in the case for w; and 1, , we get the
formulas (9)-(16)

In 3 7(1), replace = by 1/x and w by x4 whence 8 must be replaced
by (—3 + a) [see 2.9(2, 4)] We then get an equation of the type 3 7(1),
and 1n the neighborhood of infinity, hinear independent solutions of
37(1) arc proportional to g and w, provided that {a + { — B) 1s not
an integer or zero We therefore get the eght formulas (17)-(24)

The abose 24 solutions of 3 7(1) are known as Kummer’s solutons
The conditions for convergence may be mferred from the discussion
about 3 7(13) and are summarnzed 1n Table 3 }

TABLE 31
Absolute Conditionsl
convergence convergence
Absolute onthe on the Except
Formula comergence boundary* boundary st
(RO = <1 R <0 O R <1 =1
@ (6 x <l A(2) >0 -1 <R= L0 =1
am Ry < } R <0 ocRB <1 z-14
@) @& Riz) < § RAH >0 -1 <ROHO z=1
© (3 -1 <1 Riy) <0 O<RN<I  a-0
o) o 1-z <2 Ry >0 —le <0 s-g
an (s R > RH <0 C<RPH <1  z-w
02 e R(x)>g R® >0 “I<RH <O z2-x
un @n x> R(x) <@ 0< Bs) < 1 a=1
as) 22 s >1 R(z) >0 ~1 <R} g0  x-1
a9 2y 1oz > R <0 0 < Ry <1 -0
0) @4 t-z >t R >0 ~1<Ry <0 -0

a+b ef-a—by=c—1

From Table 3 1 we see that the paws (3), (4) and (7), (8) furrush the
analytic continuation of =, and 1, , respectively, from the intenor of
the unit arcle with center at the ongin to the half-plane R(z) < 3
Sinilarly, the parrs (11), (12) and {15), (16) grve the analytic contipuation
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of w, and wy, respectively, from the interior of the unit circle with
center at z = 1 to the half-plane R(z) > %, and the pairs (19), (20) and
(23), (24) provide the analytic continuation of w; and wg, respectively,
from the exterior of the unit circle with center at the origin to the
interior of this circle which lies in the left half-plane.

It follows from Kummer’s solutions that if ¢ is not an integer or zero,
one of the fundamental solutions of 3.7(1) is composed of only a finite
pumber of terms whenever at least one of the numbers @, 5, ¢c — a,¢c — b
is an integer or zero. This is the same as saying that at least one of the
eight numbers +(¢c — 1) &= (@ — b) &= (@ + b — ¢) is an odd integer.
Such solutions are called degenerate.

3.9. Analytic Continuation

The integrals 3.6(1, 6) define single valued analytic functions of 2 in
the domain | arg(l — 2); < m, and so serve for the analytic continuation
of the ,F, hypergeometric series into this domain. It is convenient to
denote the analytic continuation of the ,F, series by ,F, , and this means
the principal branch of the analytic function generated by the hyper-
geometric series. Similarly, the integrals 3.6(7, 8, 28) serve for the
analytic continuation of the ,F, series into the domain | arg(—z) | <.

We suppose for the moment that @; and w, , w; and w, , and w; and =,
(see 3.8) are the fundamental solutions of 3.7(1) about > = 0, 1, and o,
respectively. Clearly all six of these quantities cannot be independent,
and any three must be linearly related. This gives rise to twenty relations.
Let the triplet of numbers (p, g, ) stand for the relation between w,,,
wy, and s,. Thus (1,5, 6) signifies the equation connecting w, ,
ws, and w;. This expression, given by (1) below, has already been
proved [see 3.6(28-30)]. In 3.6(30), we have replaced (—z)~® and (—z)~®
by (z~%¢i")® and (s7'ei")", respectively, so that z is now restricted by
0 <argzx < 27.In(l, 5, 6), replaceq, b,andcbyl +a — ¢, 1 + b —c¢,
and 2 — ¢, respectively, to get (2, 5, 6) [see (2)]. By elimination, we find
(1,2, 5) and (1, 2, 6) [see (3) and (4)], respectively.

Next we show how to get the four relations involving w, , . , ws,
and w, . Suppose that

wy = Byw, -+ Baw,

where B, and B, are constants to be determined. We require that
farg(l — 2)| < = and temporarily suppose that R(a 4 b —c) < 0and
R(c — 1) < 0 so that w, and w, converge at 5 = 1 and Wy converges
at = = 0. Let » — 0 from the right. Then @, = 1, w, = 0, and B,
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follows from 3 13 1(1) Let z — 1 from the left Agan use 3 13 I{1)
and B, readily follows The formula (I,2,3) 1s gnen by (5) The
restricnions on the parzmeters used in ats proof can be relaxed by anatyuc
continuation, provided, of course, that we stay anay from the singular
pomts z = Oand z = 1 The (1, 2, 3) formula rmay also be denrved from
a\lellin-Barnes contour integral, see Whattaker and Watson (1927, p 290)
Replace @ and b by (¢ — a) and (¢ — B), respectutely, n (1, 2, 3) to get
(1,2 4)[sec (6)) Then (1, 3,4) and (2, 3, 4) [sec (7) and (8)] follow by
chmination

Wehave thus far obtained eight of the twenty relations The remaimng
tvehe can be found by ehmination Thus, for example, (3, 4, 5) follows
from (1,3,4),(2,3,4), and (1,2,5) If D,,D,, and Dy represent the
domamns{z] < 1,iz—1] < l,and|z| > I, respectrvely, then (1)-(4)
and (5)}8) gne the relavons connecting the functions wa I, and D,
and Dy and Dy, respectively The formulas (9)12) senve for analytic
conttnuation between Dy and Dy There remain erght expresstons which
mvolve series that converge i a different domain These are given by
(13}H16) In (1)~(4) and (I13)(16), 0 <argz < 2= In (5)9),
{arg(t —2) < = The npht hand sides of {11}, (12) arc gnen with the
wrong sign 1n Erdely et al [1953,p 107, Eqs (38), (40)]

-arQ, N8I

BETOTC—a ™ " T@ e <5 ™ o
_ TR~ 9én Ia—b)I2— oo
S i aIiTbh—9 = TA-5I( ra—0 = @

M +a—HI1—9

- N +a—BT{c—1)eme »
R £ Yy prap— o

T@ e 5 B

o+

M+ —aylc—ene b
ToY e —a) o

Na+b+1—ol(c~1)
T@ T “

_ I+ —a[(L—¢)
LA Ty y Ty g

_Tla+b+1—-9rg ¢
BETEHT—9la+1i=0)

:I‘(e+1 —a—bI(l —¢)

@ + [C)]

o+

Ter1l—a—BTe—1)

“ M—ai-8 =" T ak-fn = ©
_Te—a—HM_  He+b—al(

S Te—ale-5H =t T@re o
_Ie—a-HIE—o Te+b—9I2—4)

Ay «s\,mg CER (e wary vy w par i ®
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I'b-a)I'(a+4 b+ 1~c)ei™ Ila-8)I(a+b+1-c)ei=

¥ = T L5-0) 1) w; + T Fa-0I(a) i;

Tp-a)l(c+1-a-b) ei.—.(b-c)w Ia-b)T(c+1-a-b) ein(a—c)w
W= T(l-a)I(c-a) 5 T(1-b)T(c—b) 6.
(10)

o Te-a-b) (1 + a—b) efme . Ma+b-c) (1 + a_{,)eintc-mY
¥ = T ~5) T{c—b) 3 T +a-c) I(a) % -
(11)

_ T(c-a-b)I(1 +b-a)e® — (@ +b-c)I'(1 4 b - a) et
Pe = T(i - a) T(c - a) 3 T +6-910) 25
) Iec—b) _ THI(l+a—c)em

Wy

T 7 TTa+b+1-0
_ I'(c = b) I'(1 + a — c) exp[in(] J—b—c)]

(1 +a—b) 5>

(13)

interchange @ and b to get the relation connecting w,, w;, and w;.

l+b—-0)I(Q1 -—b) I +b —¢)I'a) exp[in(l + & —-c)]

T2 — o) e Tatb+1—0

I(a) I'(1 — b)yexplin(l +b—¢c)]
- I(l+a—0) ws;  (14)

interchange a and b to get the relation connecting w,, w;, and w;.
I'(¢c — a) I'(a) 0, P(c — a) I'(1 — b) exp[in(c — a)]
I(c) I'l+c—a—10) ¥

I'(a) I'(1 — b) exp[in(l —

interchange a and b to get the relation between w; , w, , and w .

(1——a)I‘(14—a—c) T(c—b)F(l—a)e\p[znl—a)]

2 —o b I'l+4+c—a—b)
_ I'(1 4+ a —¢) I'(c — b) exp[in(l — a)]
I'(l 4 a ~b) Wsi

(16)

interchange @ and b to get the relation between w, , w, , and w, .
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340 The Complete Solution

We now take up the question of obtating the complete solution to
the hypergeometnic equation37(1) 1n the singular cases previously
mentioned Recall that w; and , are not independent o one of these is
not defined 1f ¢ 1s an mnteger or zero, and none of the numbers a4, b,
¢— a,¢— b1s an integer The same may be said for the parrs w;, w,
and wy,ws f (@+5+1—¢) and {2+ 1 5), respecuvely, are
integers or zero In the degenerate cases where any of the numbers 4, 5,
¢ — a, ¢ — b 1s an mteger, fundamental solutions are easily picked out
from Kummer's set of 24 solutions, see the concluding remarks of 3 8
In this section we develop expansions which are solutwns of 37(1) when
the of the ,Fy’s app nw,w,, ,Wsare
tegers Thus, for example, we develop expansions whxch satisfy 3 7(1)
and which zre independent of 2, when ¢ 15 a positive anteger or zero

the analytic of these solutions 13 automatrcally
provided. Except 1 some of the degenerate cases, the solutions mvolve
logarithms and are called loganthmic solutions In this connection, the
degenerate solutions are a simple by-product of the loganithmsc solutions
A table listing the degenerate solutions and the loganithmue solutions for
various choices of the parameters g, b, and ¢ 1s given tn Erdelyi et al
(1953, Vol 1, pp 71-73) We have made several improvements on this
table which we present at the end of this section In this connection,
see also Norlund (1963)

To simphfy the analyss, consider

el £a b,
P

V(z) = (ze-tr)yo , Fy (
T -b) P vai—ay iy oy g (1 H @b, 14 a,mby
= Tama) T Loy =5) & " e ey bi-by 9
Iy b Tl 0, n,) 1+n, 51,1 b ay- bxl )
T(h-a) T(1 +a, - 1+ bo-by
S<agz<lr [t
‘This 15 advantageous as 1t ean represent any of the formulas 3 9(1-4)
by making the sut m the

D e 0,

Vz) Pouaton @ a & b

@, I e
£ Uy 392 e
L3 3903) x
'S 39(9) =z
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Similarly Eqs. 3.9(5-8) are given by
1 +ay—by, b -a ,,)
1+a,—a, -

_ TG —b) Il + - a,) (1 tay-by,by-ay ) 1_,,)
T Io-a) (1 +a —by) * I+8-5 N

b I'(by = be) I'(1 ’*‘”1"”2)“1;‘ (1+al—bl:bo"az

W(z) = oF (

l—z),

— \b

+(A=s) lT(bl—a._,)F(1+al-—bo)“ ! 1+bo~b

Jarg(l - 2)} <= 3)

W(=) Equation = ay a, b by
wy 39(5) 1—= a c—~b 1 ¢
(1 —3)°-cwy 39(6) 1 — = c—a b 1 c 4)
1w, 3.9(7) z a l1+a—~c ! a+b+1—c¢
=zt~11p, 3.9(8) x a+1—c¢ a 1 a+b+1—c¢

To represent 3.9(9-12), it is convenient to use two formulas:
14ay,—by, 1 +ay —b

1+a —a, l—z)

by — b)) I'Q + a; — ay)
by —a) I'(1 + ay — by

T(z) = oFy

(z—le{n)l+a1-bo

= exp[in(b, — 1 — a))]
L+ay~b,b —a] _
X o ( 148, — b, =)

+espliy — 1~ Tt = T T

(z-leim)l+arby

1+al'_bl’b0—a2 w1 ~
X._!Fl( Cn = ) 0 < arg z < 2. (5)
T(=) Equation a, a, bo b,
1wy 3.9(9) a c—b 1 14+a—~2» (6)
(1 — z)o¥d—cp, 3.9(10) c—a b 1 i1+b—a

Note that

st T(g) = 11 — =), (7)
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— by, by —
00— e (0 )
_ T W e —a) _
= = a) T+ 0y — By 70 T =)
14+ ~ by, 1 4+ a, —b
x o ab—by “l1-4)
T~ 3) T + 0, — a) ;
T o Ty i plim(l + &y — B — s

x,F,(I*"*’I’"l*""”h‘z), O<agr<2e (8)

145, -8
U(z)  Equaton @ o & b
g 3901 a E 1 1+atb—c (]
0, 39012 > o 1 Tta+b—c
Note that
exp(—tma)(t — 2p-HUz) = V({1 — 2} &) oy

In V(z), suppose that &, — by = s + « where 5 ts 2 positive tateger
or zero We further suppose that neither of the numbers | + ay ~ &
nor } 4 a3 — by 1s a negative integer or zero Then

NI S0 ¥y (I Ner S NN Uty i TR
Ve = by e I a3y Yo o 14+s+e )’)
I+ Il +a,~a) 311 1+a-b;,1 +an-b;
ey T T oy sy ) 08 ( [ l’)
(1)
Now the second ,F; can be expressed as two sums, viz,, $4z3 and X2,
In the first sum we can let ¢ — 0 The second sum can be expressed i
the form 2., , and wath

(ze =)Lt + @y — @)

T - a) I + o — b

% 'i‘ (A +a—b)(l +a ;' (s — 1 — Bt (—)*=*
=

Vi) =

(R + 4 — &)1 + @ — by o1 + 23— By
Loy — a) F(1 + @y — b)(s — 1)

R Lo 2
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we can write

P(2) - Vyi(z) = (1 — &) (1 4 a; — a,)(ze~7)1~bp)
("') 1 "’) - (1 + e)sT'(bo— a,) ]"(1 + a, - b,)

X ZzFx (1 +a11-_b:;1+_: @~ by z)

_ (ze )1 4 5)1 + a3 —bp)_(1 + ap—by)_sinm(by—as +-€)
I'(1 -¢)sinn(by ~ a,)

3] -

14a;-by—e 1 +as—by+4e1
1-¢1-+s

X a1«"2(

Now let ¢ — 0. Then by L’Hospital’s theorem

b e o (PO + @ — 2
I’("') = Vl(z) + il F(bo . (12) P(l +a, 1_ bl)

X |l + In(aes) + 41 + @ — bo) -+ by — @) — (1 + 5]

1+a —by,1+a,—b,
XEF]( 145 z)
o (I + ay — bo)e(1 + a5 — by)p2*
X 0+ ),

X (1 + ay — by + k) — (1 + a; — by)
+ (1 + ay — by + &) — (1 + a, — by)
=1+ s+ &) (1 +5) —#1 + &) + (1), (13)

by = b, +s, s isa positive integer or zero,
1 + a, — b, is not a negative integer or zero,
1 + a, — b, is not an integer or zero,
0 <argz < 2m

It is understood that if s = 0, Vy(z) is nil, i.e., X575 is nil if s = Q.
This convention is retained throughout.

We can also derive (13) from the Mellin-Barnes contour integral 3.6(28).
For example, if F(z) = w,, then @ = & + 5. The integrand of 3.6(28)
(there replace ¢ by ) has simple poles at u = —b — k, k = 0, Li,s—1,
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$>0 Ifu=—b—s—kk=01, ,these are poles of the second
order Now

Ifa + ) IG + %) N—u}{—z)* _ nl{a + u) T(-—4)( %
4= Te+u RaFTrr sy v Py
and the residue of Aatu = —b— ks

(o MR-t -1 Kty
e 8

Z ((" + &+ F) Abyepp =
Agam, we can wrtte

A ()l —u)—z)
s ne Tl ~a— I~ 6w T(c F ) *

and the resdue of A atw = —a —k1s

(=) temel(a 4 A1 + @ ~ h ™t
Tie = a)s + AT AT
¥ {lotaetn) + dia + &)
+idle—a—k) — Pl +5 —9(1 +5+8)
(s)

When the contour ntegral 1s evaluated as 2 sum of the tesidues of 1ts
integrand due to the poles enumerated above, (14) leads to the poly-
nomial ¥y{z) and (15) leads to the series expansion for V(2) — Vy(2),
all of this for ¥(s) = w, #s ated

We now consider the restricttons imposed on 1 4 ¢ — b and
1+ a; — by an (13) X 1 4 a; — B 15 2 negative integer or zero, then
from (12), Vy(2) = 0 and with the ard of 2 4(13),

L N N

"(m + ) I(1 1+a-5
b= m :"Il(b‘,( :0; ”_Z),(srln)x [ eFx( " L "1 )
I+4a b= m  mapositve integer or zero, {16

which 1s the statement (1}
If (b, — a,) 13 2 negative integer of zero, a sumilay analyms gives

{=yttm — D F(1 + 9y — a)

V() = Py(s) + s

(st e
1 b, 1
% 3F ("’ T:‘JH o
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Vy(z) = (s — DII(1 + ay — a,)(ze~tr)1-b0
(=) = (s —mII(l1 + a; — b,)

= (m =)l + a, — b)3*
X g, (1 — R

(=TI +a; —a) I'(a — a,)
T —=m)IT(Q +a —b) (1 +a, —b

m-—s,m
XzFl( ! 2.'_1),

m by — a,
by —a,=1—m, m a positive integer,

and this too could be deduced directly from (1). In (17), the second form
for V,(x) follows from 3.2(7). Note that V,(2) vanishes for m > s.

Now suppose that (b, — ay) is a positive integer. Then application of
2.4(14) to (13) gives

(ze—in)(l—bl)zs—m
1)

N ; (_)s—l(ze-l'ﬂ)u‘bo’f'(l +a, - az)
Piz) = V(=) + stml I'(1 + 2, - by)

X |ly + In(ze) + (1 + ay - by)

+ (1 + m) =1 + 5)] o F (—m, 11 .:‘? — b,

y

- (~m) (1 + ay — by)*
L A

X (1 + ay = by + R) =~ (1 + ay—bg) -+ (1 + m—k) ~ (1 -+ m)
=1+ s+ E) + 41 + ) =1 + &) + (1)) + ()mm!

o (14 ay—by)(k~m— 1) 2%
X 3
k=§+1 (I + s)kt

by = by + 5, 1 +a,-by = —m, 0 <arg z < 27,
(18)
where m and s are positive integers or zero. Note that the last infinite
series in (18) can be expressed in terms of a ,F, .

Thus (13) is valid without the restrictions on (1 + a, — by) and
(I + @, — by). The point is that without these conditions, the expansion
is free of logarithms unless (b, — @) is a positive integer.

fa=0b+va==5b—p—2—1, and b, = by — p, or if
a = bq + x'.—}— By @s = by — A — 1, and b; = by -+ p, where i, v, and A
are positive integers or zero, then the logarithmic solution for ¥(z) can
be put in the form 3.4(15). If b, = ay or b, = a,, see 3.7(16).
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For W(z) we have

(I —=2) Il 42 —a)
b, ~a) 1+ — &)

(1 4 ay — by{be — @ah(s — 1 — BT (—)¥1 — 2)*
*2., 1= llls — s

Wiz) =

_ (IMTA + 6y — a1 + & — B)salbo — 39)e
ST =B — el (i & — boa — T

—511 1
X’F*(1+bulu,t2~b.+alllj)' %)

W) = W{3) + r( :S I?!('l”;_’a'j‘l

x for + 1001 -2+ 61 + 210 + 051 2 1 + )
(i

& (14 o= B o) (12
+% U +aR

X (L + @y —by + k)~ (1 + ay - b) + by - as + K- by~ 2)
*\l‘(l+:+k)+¢(\+!)—¢l1+k)+¢(l))i. 20y

where b, = &, + 5, £ 13 a positive integer or zero, nesther of the numbers
1+ a; — bynor b, — 1, 1s 2 negative integer or zero, and | arg(l — z)} <=

I£ (L + @, — by) 15 a negative integer or zeta, then directly from (3),
and without the restriction that b, 1s a positsve integer, we have

Wiy = (TR |5~ Gl (—m 112 “ali-g),

t—m—a (@)

@ = —~m,  mapositive integer of zero (21}

If (b, — a;) 15 a negative integer or zero, we agam armive at the form (21)
since WW(z)1s mits

Suppose now that &, = b, + 5,5 2 postive tnteger or zero Then
W(z) 15 gaven by the right-hand stde of (20) if there we mterchange the
zoles of &, and &, and multiply throughout by (1 — 2)*

oy =v+ Lay=—p—handb =v— A4 Losfag =v 4+ p+1,
ay = —, and b, = » — A + 1, where . », and A are positive integers
or zero, then the logantthmue solution 1s also given by 3 4(15) If b = a,
urb, =1 i a4y, st 3HIG)
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Similarly, from (5)

T () = SRl — 1 — &) I(1 + @ — ap)(sleim)ttor®
1(~) h T(bl - a‘.!) r(l +a — bo)

s-1 g
(1 4+ ay — by)ifbo — a)ufs — 1 — B)I (—)F=~*
X éo 2

_ (=yptsheadl(l +ay —ay)(1 +a, — by)s-1(Bo — 25y
= T, — a) T + & — &G — D!

1—s1,1 B
X3F2(1+b0—a1,2+a2~—b0 ")' (22)

(=701 + a3 — ap) P!
ST —a) T + 4, = 5)

X {ly ~ Inz 4 4L + @ — by) + 96, — @) — (1 +9)]

T(z) = Ty(s) +

14+a —by,by —asj__ o (I +a; — b)i(by — ax)yz*
XﬂFl( 1+s ’”l>+§o 0 =+ 5)A0

X (Y 4 ay — by + k) — (1 + a; — by)
+ 9oy — g+ B) — by — @) — (1 + 5+ &)
+ 1 +9) — g1+ B+ ), (23)

where b, = b, + s, 5 is a positive integer or zero, neither of the numbers
1 4 a; — by nor b, — a, is a negative integer or zero, and 0 < arg z < 2.
The restriction on the numbers 1 + @, — by and b; — a, is not essential.
In the absence of this restriction, T'(z) is not logarithmic and the forms
for T(s) can be deduced directly from (5). The discussion is like that
for 1W(z) in view of (7).

fa,=v+1l,a,=—p—Aandby=—p+lorifg,=v+p+1,
a, = —\, and b; = p + 1, where g, v, and A are positive integers or zero,
then the logarithmic solution for T'(z) follows from 3.4(15). If b, = a, or
by = a,, see 3.7(16).

For U(x) [see (8)] we have

Uye) = DU+ @ — an) explin(l 4 ay — b)N(1 — 2)°*
e T, — ax) T(1 + a, — by)

« g: (1 4 a, — o)1 +a, — bgf(s —~ 1 = B ()1 — z)*

_ explin(a, — b)) I'(1 4 ay — a))(1 4 ay, — b)) 4(1 + as — by,
(1 = %) I'(by — a5) I'(1 + a; — bo)(s — 1)!

1—s51,1 1
X"F'"'(l-{-bo—-al,l—*-bo—agll—z)’ (24)
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(YT + 0, = o) explon(t +ay — b))
) = B+ i35~ ) 1 —3)
sy I — Y e 41+ 0 ) + 6By = ) — L4 9)]
1 +a—b,1+a—b
( 1+

o -9

o (0 o —bull +a — b)fl — 2)*
+E B (S TR
X +a—by+8) —f{l + oy — b))+ (1 + a5, + %)
—¥{l +a; — n)*¢(1+!+k)+¢(l+-‘)*¢(l+’¢)+¢(1))z,
{25)

by =b,+ s, ¢ apositive integer or zero,
1+ a, —b, 13 nota negative integef or zero,
1+ a, — B, 13 not an integer or zero,
O<argy <2n

If 8, = b, + 5, s as 1n (25), then U(z) 15 given by the nght-hand side
of (25) if there we nterchange the roles of b, and &, and multiply
throughout by (1 — =)

Concerning the restrictions 1n (25), 1f (1 + a; — &) 15 a negative
nteger or zero, or if (B — a,) ts a negative integer or zero, then U(z)
1s not lagarithemtc, and the forms for U(s) can be inferred directly from(8)
The discusston 1s akn to that for V(z) m view of (10) Also
=P+ @y — a) explen(l + ay — b))

Wi I+ ay — by

5 i ot — 83 08 gy — By ) ~ L )

U(z) = Uygs) + ¢

L B R B e

X+ — B+ B) =+ 0y~ B) + 4L+ — )

UL+~ L+ 5+ B i+ R )

gt 3 Bmm DI S m b — )Y

et (R 08
bi=bg+s lta—by=—m O<ags<2m

where m and s are positive 1ntegers or zero
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Yay=v+1la=—p—Aandb =v—A+ lorfay=vi4pt1,
a, = —A, and &; = » — A + 1, where g, v, and A are positive mtegers
or zero, then the loganthmuc solutron for Uz) can be expressed by the
form34(15) 1f b, = ayor b, = 1 + a;, see 37(16)

Notation for the Table of Solutsons n the Degenerate Case (Table 32)

Tt 1s convenient to introduce some notation

m,n, e Denotes nonnegative integers

rt Means that the quantity ts not an integer

Lo Aspreviously noted we havethe 24 series of Kummer
[see 3 8(1-24)] These may be divided into six sets, each set

consisting of four equations We have already
called the sets w;,1= 1,2, ,6 We now use
w4 to designate the jth equation 1n the sth set
Thus w4, 1,5, and w, , stand for Egs 3 8(1),
3 8(6), and 3 8{22), respectively

deg Denotes that the second solution 1 also degenerate
Note thatalld i by d
n terms of the f notation, see 3 7(14)

Since the hypergeometric equation 1s symmetric in a and &, we assume
that

(1) If 2 or & 15 an integer, then 4 1s an 1nteger

(2) Ife— aorc— bisannteger, then ¢ — & 1s an integer

(3) Ifb— a1san integer, thenb — a 2 0

1fa = ¢, see 37(16)

Wronskians
Let
W, = 1w, , 1) = () 1 (z) ~ w,(2) e, @n
sl —aper s o8
Then
Wu=(i —4 n,,:‘f(“L;’_(:‘)'r_;‘LrﬂA'
29
M+l —a—HI( L Ml+a_Hge~
R e Y IR I iy e el

(30)
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I’(a+b+l—c)r(2 C) _ F(C+1—a-—b)f'(2—c)
Mo = ~TFat1-9TB+1-9% "= "= Ta-aTi-5 A,
€2)
7 I'l4a~-b5)IQ2—c) .
Wy =~ rq—-6rdq+a— )A Wy=—(c—a—0b)4, (32)
W, = F(a+b+1—c)I’(l-{-a__b)em(c-b)A’
Ta+1—c) Ia) o
W, _Ile+1—a—b)I'(0+a—b)em™
45 ]’(1 —_— b) F(c — b) ’
Wy = (b — a) e™A. (34)

To get W, for 1 = 1, 2, 3,4 simply interchange the roles of a and &
in I/V‘l'S .

3.41. Kummer-Type Relations for the Logarithmic Solutions

3.11.1. INTRODUCTION

The Kummer relations for .Fy(a, b;c; 2) are given by 3.8(1-4).
Here we develop similar-type relations for the logarithmic solutions V(z)
and W(z) [see 3.10(13, 20)}. The analysis is due to Norlund (1963), and
in the main it is convenient to adopt his notation. The connection
between the notations is given by 3.11.2(7-11).

3.11.2. Tye Case WHERE ¢ Is A PosIiTIVE INTEGER
We assume that
c=s+4+1, § a positive integer or zero,
neither @ nor b is one of the numbers 1, 2,..., s. )

Let

Gulas by €3 2) = (—)Pmi(a) (b)Y, LI hle — 1 = ML)

k=0

s 1—51,1 N
::‘('a'~1)(b-—1)3F2(2-_a,2~b 1), )



[

Gla, b,c,2) =

g b,c,2) =

Bofe. b, e 3} =

fla b, z) =

1t HYPERGEOMETRIC FUNCYIONS

b
Globe o)+ L 0

X {nz + (@ + B — o) + b + 8 — )
FHL A9 =+ 5+ B =P+ B+ HDL
Izl <1, |largz | <, 6]

{a)(8)2*
Gfab,e, z)+'z(‘_;‘_l)k“

X {In 5+ 9la + B+ b + B) — §(1 + s -+ B) — (1 + B},
Is1<1, lags)<m @)

G+ L (B0

Xzl -a—k+d(l —b—k)
—d(l s+ B — (1 + A,

lzl<1, fagzi<m |arg(l —2) <m, (6]
Gl + 5 10

X {Infze1er) -+ (L — a — K) + (b + &)
=91+ 5+ &) — g1+ B,
j2i<l, e=41, —(l—dn<agz<{+m (6)

We now 1deatify the Norlund notation with our ¥(z) and W(z)
notation In 310(1,2) let @, = b0, = a, by = L by =c= s+ I,
1€, V(z) = w, For this set of parameters, instead of V(z) and Vi(z),
write (e, 8, ¢, z) and Vi(a, b, ¢, z), respectively Then

Wab,e) =

() 48~
TR = TG =g Ciler b2 )

Via b,¢,3) = (z¢ )0 ,F, (" H'b“)z)

b—a

()M b a)

iy (g y o LG LU ®

Agan, w33, 4), @, = 2,2y = c— A hy= L b= c=¢4 1,
and replace z by 1 — z, that 15, W(z) = w, For this set of parameters,
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instead of W(z) and W,(3), write W(a, b;c;2) and Wy(a, b; c; 2),
respectively. Then

(=)0a + b~ 3)
stl{a —s) L(d —s)

Wi(a, b; ¢; 2) = Gy(a, b; c; 2), 9

o) (VI +a —b) Ia) e
Vy(a, b; c; 2) = T +s —a@+5—3 Wy(a, b; c; 3), (10)
W(a,b;¢;2) = F(a,b;1 +a+b—c;1 —2)

_ ()Ta+b—9)
S T@a—910—s)

g(a, b; c; 2). 11)

Note that each of the equations (3)-(6) satisfies 3.7(1). If either a or b
is a negative integer or zero (4) is not defined. So that @ and b can
assume all possible values, except for those noted in (1), is the reason
for considering the solutions g, and g, . In (5) we suppose that neither a
nor b is a positive integer, while in (6) we assume that a is not a positive
integer and b is not an integer <s.

In view of 2.11(8),
Pla + k) + b + k) -1 +5s +R) =1 + k) = (a + b~s-2)/k + O(k?),

so that (4) converges forz = lif R(a + ) < s+ 2orifa+ b =15+ 2.
It is easily shown that

8la, b; ¢; 3) = G(a, b; c; z) + [(a) + ¥(b) — ¥(c) — Y(1)]Fo(a, b; c; 2),

argz | <, (12)
£(@, b; €3 5) = Gla, b; ¢; =) + [¥(1 - a) + (1 - b) - h(c) - Y(1)] F(a, b; c; 2),
largz | <m,  Jarg(l —2)[ <m, (13)
&a, b; c; 2) = G(a, b; ¢; 2) + [f(1 — a) + J(b) - {c) — (1) ~ ein] , Fy(a, b; c; 2),
€= 41, —(1 —e)m<argx <(l + €, (14)

7 sin w(a + b)

: . a,bic;z
sinwasinwh * 1, b; ¢; 2),

gofa, by c;2) — gla, by 6y =) =

largs| <=,  |arg(l —2)| <m, (15)

,‘.re-az-m
sin na

&(a, b ¢;2) — gla, by ¢; =) = ofFy(a, b; c; 2),

S=41, —(1—=8&m2<argz<(l +8)n2,
(16)
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(e b.6,3) — e b6 3) = Ty ,F.(abr.:)

=41, ~(Q-—8m2<agzr<(l+yn2
an

By differentiation of the power sertes, we have

Zgg(a be 2= ("W’)" fatmbtnctnz), (18

e e b = (a)w tg(e +m.b,503) &
Fo e Hab, o) = (V0 — g Habe—nz) Q)

Equations (18)-{20) are the analogs of 3 4(1, 4, 5), respectively, surtably
specialized Clearly 1 (18)+(20), g may be replaced by g,,£,, 0t G

It 15 readily venfied that both G(a, b, ¢, 2) and (1 — 2)G(c — 4, b, ¢,
zf(z — 1)) satisfy the differential equation 3 7(1) Further, for & small,
the coeffivient of = * 1s the same for both soluhons Hence, there must
be a relation of the form

(1 —2) 'G(c —a b,e, 3z — 1)) — Gla,b,c, 2) = C,Fyfa,b,e,2), (21)

where C 1s a constant Expand both sides of (21} in powers of z and
equate the constant ferms  We find that

Co —sm+ 4,
where § 15 as 1n (16), and 4, can be put n the form

1—s51,1
A= IR (00

) = -0 — g —atg
n view of 313 3(42) Thus,
Gla,b, ¢, z) = (I — 2} *G{c — a, b, ¢, 5z — 1))
0 44— 2 +9) — 1 — Al Fia, b, ),
&= 1, ~( =82 <argz <{1 + =2 {22)
Now Gla, b, ¢, z) 15 symmetric in the parameters a and b So
Gla b,c,5) = (1 —2)*Gla,c — b, ¢, 2l(z — 1)}
+ [8m + (1 — &+ 5} — (1 — )] Fyla, b,c,2) (23)
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and combining the latter two formulas, we get
Gla, by ¢; 2) = (1 — 2)=9*G(c — a,c — b; c;2) + [(1 —a +35) — (1 —a)

+ (1 — b 4 5) — (I — b)] .Fy(a, b; c; 3), fargz | <,
(24)
and in particular if ¢ = 1, i.e., s = 0, we have

Gla, b 1;2) = (1 ~2)*G(l —a,1 —b4;1;2), fagz|<wm (25)
The combination (12) and (22) produces

7w—&im:

oFy(a, b; ¢; 2), (26)

sin wa

gla, by c;2) = (1 — )% (¢ — a, by 6 ———) —

a not an integer and 3 as in (22). If we use (16}, (26) becomes

e, b 65 2) = (1 — 2 %le — a, b 5 (= — 1)), @7)
In a similar fashion, we see that
ab, a;e;2) = (1 — 2)"%(a, ¢ — b; ¢; 5/(z — 1)), (28)
gla, b;c;2) = (1 — 2) % a, c — b; ¢; 3/(z — 1)), (29)
g1(b, a; ¢; 2) = (1 — 2)%,(c — a, b; ¢; 2/(z — 1)), (30)
gla, b; c; %) = (1 — 2y % (c — a, by ¢; 3/(x — 1)), (31)
goa, b; ¢; %) = (I — 2)~%,(a, c — by ¢; 2/(z — 1)). 32)
Combining these formulas, we get
gla, by c;2) = (1 — 2)9 % (c —a,c — & ¢; 2), (33)
gola, b; c; 2) = {1 — 3)**b(c — a, ¢ — b; £; 2), 34
afa, by 6 2) = (1 — 3)% g (c — b, c — a; ¢; 2). (35

It can be shown that g(a, b; ¢; 2) and ,Fy(a, b; ¢; 2) satisfy the same
contiguous relations 3.4(19-27). For this and related items, see
Kovalenko (1967).

Finally, we record Mellin-Barnes integral representations for the
functions g, g,, and g, :

(_)s+15!

gla, by c; 2) = 2nil(a) T(0)

f°° Tla — 1) T(b — 1) T() It — ) st dt,
|arg z | < 27, (36)

where the path of integration is indented if necessary so that the poles
of N(1)I'(¢ — s) lie to the left and the poles of I'(a — t)I'(b — 1) lie to
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the nght of 3t Computing the mtegral as 2m times the sum of the

residues of the integrand due to the simple polesat? = s — Ls - 2, , 1,

and due to the double poles at ¢ = 0, —1, —2, , we get the sertes (4)
‘The representation (11) 1s equivalent to

faboe,z)= ()4l Na — s} I(b — )

Tl o) T
o Ifa— 1) DL O CE 1,
XJ FE—s—1)

Jarglz — Dl <7 (37)

where the contour passes between the poles of I'() and the poles of
I(a — §I'(6 — 1) This follows by evaluating the ntegral as 2m tumes
the sum of the residues of the miegrand due to the poles at 1 =0,
~1, =2,

We also have

_(=)ytat = Na—0)I( -t) r(t = x)(: -0ty

sa bemy =257 L‘ Tt

larg(l - 1)! <, (38)

where the path of integration separates the poles of I'la — #) and I'(h — )

from those of I(t — 5) This 18 agam reachly proved vsing the residue
calculus and (4)
ext we have

aeben = I'(l - a) (-4

e QI gt
Xju|m1‘(l+t-a)l‘(l+! Thed
o<e<l, R(z+b)<:+2 )

Here the path of integration 1s 2 straight line parallel to the mmaginary
axis and crossing the real axis at 5 + 1 Evaluate the integral in (39} as
the sum of restdues of its integrand at the poles, £ =s5,5—1, ,
1o get (5) Note that the mntegral in {39) vanushes for = > 1, and diverges
if 215 negative or complex

In a symular fashion,

atoben ==

i PUY (1 —~ 5) T(h — 15t
X .‘l L4tmim 1 x—I;( )7( dt,
|ag(—2) <o (40}
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In this instance the contour is a line parallel to the imaginary axis so
that the poles at £ = b, b + 1,..., lie to the right of the path while those
att = s, 5§ — 1,..., lie to the left of the path. Application of the Cauchy
residue calculus leads to the representations (6) and (8).

3.11.3. Tue Case WHERE ¢ Is A NEGATIVE INTEGER OR ZERO

Recall that if ¢ is not an integer, w; and w, are linearly independent
solutions of 3.7(1). If ¢ is a negative integer or zero, and both a and 5
never coincide with the numbers 0, —1,..., ¢, then the Kummer-type
relations follow from those of the previous section with an appropriate
change of notation as the roles of w; and w, are interchanged.

Let us now suppose that ¢ is a negative integer, and that either a or b
is one of the numbers 0, —1,..., ¢. In particular let

c=1—s, a= —m, m <s,

s a positive integer, m a positive integer or zero. H

If b is also one of the numbers 0, —1,..., ¢, then assume —b < m. Let

fabian =3 Gl _ 5 CnhOht, o

Also, see 3.7(14),

s =1 =m) (b)) —m,s —m| __|
f(a,b,c,z)-— (S—l)! ZFl(l_m_b < )’

b+#1, 1 —m — b is not a negative integer or zero. (3)

Now both (2) and (1 — 2)"%(a, ¢ — b; ¢; 2{(z — 1)) satisfy 3.7(1).

As w, is also a solution, there exists a relation of the form
(I —2)%(a,c —b;c;2/(z — 1)) — fla b;¢; 2)
= G, F(l+a—c1+b—c2—cz2), )

where C is a constant. If we expand and equate like powers of z1,

we find

bss-m—l 1 — $)u(~—9) s—m-1(} —m—1Dm!
() Zo (m +(1—~s)),ng e () (S')(gs__ 17)11 )t m! (5)

in view of 3.13.1(5). Similarly,

(t - 2)7f (a, ¢ — b; ¢; zf/(x — 1)) = f(a, b; ¢; ), a= 0, —1,..., ¢, barbitrary.
(6)
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Thus from (4) and (6),
(=2 * ¥ (c—a,c—b,c,2) ~fla,b,c,5)
=C <, F(l +a—cl+b—c2—e32), )
C as1n (5), and therefore
fa b, e, 5y =1 — 2y (b c —aczilz — 1)
=(l -2y ¥{c—ac—be,z) ®)

where both g and b are one (but not necessanly the same) of the numbers
0 ~1 ,c

3.12. Quadratic Transformations

The formules 3 8(1 24) may be viewed as 2 transformation of the pFy
1n the vanable, actually a linear fracttonal transformation Put another
way, huummer's solutions arise fram a study of transformations of 3 (1)
1to ttself under proy of the independent vanable
It s natural to mqulre of there exist quad and higher t
It can be shown that if and only if the numbers

£

- He-b  He+b—q)
are such that one of them 1s % or that two of them are equal, then a
quadratic transformation exists The basic formulas are due to Gauss
and hummer and a complete list 1s due to Goursat, see Erdélyi ez a!
(1953, Vol 1, pp 64-66, 110-113) Some examples follow

(28 2= Les) = (1 +2) 4R, (o n+§,:,(l—1‘:—),) m

Fi2a 2 —c b 1em) =l —2h fac- n~{,¢,»-(—l-%;),
@

e+ U= e+ 1,7 = (1 + 37,5 (o bec T jjz),), )

Fif2e ba+ b+ 3}, 2) = Flabatbt+i,a(l —2) (&
Fil2e— 12— Y a+b—3 2) = (1 - 23),Ffe bya+b—1}, 421 —3)
)

ol —a o= (L — 2yt Fflfe — o M e~ 1) 2480 — )
®
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y=(—2pr 0

0,520, 29) = (L =28, (18,36 + Dia + 3 (725) ) - ®

Sometimes (4)-(6) are given with 2z and 42(1 — 2) replaced by (1 — »)
and 3, respectively, y as in (7). All formulas are valid near z = 0 and
(1 — =)* > 0 if 8 is real and =z < 1. Many other forms can be derived
from (1)-(8) by use of Kummer’s formulas 3.8(1-4).

For the proof of (1), recall that ,F(a, b; c; x) satisfies

x(l—-x)%-f-[c—(a-{-b—{—l)x]g—abvrzo. )

If we write

-4
(1 +2)*°

X

v = (1 + 2)*w,
Eq. (9) becomes

2 d
z(l—z)-d‘;,:z—j+[c—(4b——2c)z+(c—4a~—2)z‘~’-]i:0

—2a[2b —c+(2a—c+1)2]w=0. (10)
With b = a 4 3, the latter reduces to

d*w dw

(1 ——z);i-z—.l-}—[c—(lia—c+2)z]3:—'—~2t1(2a+1 —cw=0, (11)

which is satisfied by oF\(2q, 2a + 1 — ¢; ¢; ). It follows that both sides
of (1) satisfy the same differential equation and that at z = 0, both sides
of (1) have the same value. If ¢ is not a negative integer or zero, the
differential equations (9) and (11) have only one solution which is
regular at = = 0 and (1) follows. Now apply 3.8(3) to the right-hand
side of (1) to establish (2). If in (10) we put b = ¢/2 and replace z® by x,
we obtain a differential equation satisfied by the left-hand side of (3).
Then, provided that ¢ is not a negative integer or zero, a similar argument
for the proof of (1) leads to the statement (3). The differential equation
approach can also be used to prove (4)-(8). Equation (4) may also be
derived from (2). There replace ¢ by @ + & 4 4, = by z/(z — 1), and
apply 3.8(2) to the left-hand side. A generalization of (7) is given by 9.5(1).
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The combination (4} and 3 9(7) yields

20,2 |z+1 I‘(a+b+;)ru)
Y I e R Y il l")
Na+b+DIR) @+ hb+1
+ 2 A (T )
{12

For cubtc and higher order transformations, see Erdélys et al (1953,
Vol I, p 67), and the references given there

Quadratc transformations far the logarithmue soluttons of (9) and (11)
have been discussed by Norlund (1963), see311 In the sequel
¢= s+ 1,5 a positive 1nteger or zero, whenever the functions G, g,
o, Ot gy are involved, and ¢ = 1 — 5, 5 a positive integer, whenever the
funcuion f1s mvolved Now G{a, z + 4, ¢, ) satisfies () withb =a + §
and G(2a,2a + 1 — ¢, ¢, z) satsfies (11} Hence, 1f neither a nor &
1s one of the numbers 1, 2, , 3,

4
Glaa+ia ﬁ) = (1 + 2)*[C,G{2a,2a — ¢ + L, ¢,3)

+ GF (23,20 ~ c 4 1,¢,2)) 13
where € and C, are constants Divide both sides of (13) by 21 or by
Inzife=1 Let z—+0 and find C; =1 Now let z— 1, and use
313KL,9) Then

C=y(l +5s—2a) —¢(1 —22)+2In2, RQRa)<s+3 (19
In = sumilar fashuon, of R(26) > s -+ 3, then use of 3 13 12, 12) grves €
asn (14) Hence,

Glaatie = (1 + 2)*[G(2a,2a — ¢ + 1,¢,3)
+ CoFy(2a,22 — ¢ + 1, ¢, 2)]

2a#1,2, .2, (15

4
T

and with the aid of 3 11 2(12) or 3 11 2(13), we have

gleatie (1-:_‘,—),) = (1 + %0, 20 ~ ¢+ 1,6,%)
= {1+ +)(20,20 — ¢ + 1, 6,570,
20 1,2 2 (16}
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and a like relation with g replaced by g, under the stronger restriction
that 2a is not a positive integer. Note that (4z)/(1 <4 2)* is unchanged
if = is replaced by 1/z. From 3.11.2(16), (1), and (16), we have

v 4z
(1 + =), (a, a-3%c '('1—_}_‘::)?) = £1(2a,2a — c + 1; ¢, 2)

-+ F1Qa,2a — ¢ + 1; ¢; 3),

T
sin 2wa
2a not an integer.  (17)

Next we consider the rational solutions, and so suppose that ¢ is a
nonpositive integer, thatis, ¢ = 1 — s, s a positive integer. Now (9) has the
solution f (@, @ + }; ¢; x), and (11) has the solutions f (2¢, 2a — ¢ + 1; ¢; 2)
and 217¢ ,Fy(2a — ¢ + 1, 2a — 2¢ + 2; 2 — ¢; ), provided that 2a is one
of the numbers 0, —1,..., —(2s — 1). Hence, we have a relation of the
form

20 I,
(1 + 7% (aa+ b6 7 )
=Cf(2a,2a —c+ 1;¢,2)

+ Cpztc,Fi(2a —c+1,2a —2c +2;2 —¢;2).  (18)
Let z — 0, then the coefficient of the ., vanishes and each of the f
functions approach unity, and so C; = 1. To determine C, , we consider
two cases. First suppose that 2a is one of the numbers 0, —1,..., 1 —s.
Then the left side and the coefficient of C, on the right side of (18) are

polynomials in = of degree —2a, but the coefficient of C, contains higher
powers of . Hence, C, = 0, and

(1 +s)-2“f(a,a + 3¢ —(—l—%_iz_j._,—) =f(2a,2a — ¢+ 1;¢; 2)
= 57%f (2a,2a — ¢ + 1;¢; 27Y),
c=1—s5, s=1,2,.., 2a =0, —1,...,1 — . (19)
Now assume that 2a is one of the numbers —s, —s — 1,..., —(2s—1).

Then the ,F, in (18) is a polynomial in & of degree (¢ + 1 — 2a), and
it can be seen that

¢ F2a —c+1,2a — 20+ 2;2 — 6, 3)

()T — 9T =),
= =% D= 2;) =7%f (20,20 —c + L6271 (20)
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Multply both sdes of (18) by 2% and let z—» 00 Then C; 1 the

reciprocal of the coefficient of z=%f on the nght side of (20) Hence,
4

A +27f (o at+beqriay)

I(2a—2c - 2) I(1 —
—fQa2a—c+ 1)+ (=p? (EmiSr)(zg;) 24)

X 8 Fyfa ¢+ 1,20 - 2% +2,2 —¢6,3)
e=1—355=12, ,2a152neganvemteger, s —1 < ~2a <2 —1, 21}
and under the same conditions,
dz 2 -
floathagip) = +208 20—t 1,c.2)
+ 4 Y a,20 — e 4 Lo lfz) (22)

Consider now the the 1 solutions
suggested by (2) Thus from 3 11 2(23) we have

14 4z
Eloatiagig) - (D eloc—a—te -7 ¥55)
+ [+ ¥k —a+9) —y(E —a)}
x,r,(aaﬂ,c,_ui;z),),
S§=41, —~(1—-8m2<agz<(l+8n2, @3)

wheree = 1 + 5, s & posttwve integer ot zero The combination(15), (23)
gives

Glac—a-ta—y ‘_‘z),) = (L - 29622, 2 — ¢ + L,¢,2)

V224§ £ 1 —20)

~ 1 —2)

b+ —a) Y —a)]

&
X oFy (a,c—a-«i,t,—-(—l-fz—)!—),
(%)

provided that 2a # 1,2, ,2s Appl of the
311 2{31) to (16) yiclds

nle—a~tac— = - apma,2a ~c 41,68 (25)

4z
—ay
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provided that 2a # 1, 2,..., 2s. If 2a is not a positive integer, we can
replace g by g, in (25). Similarly 3.11.2(32) and (17) give

&o (‘1»5“‘1 -6 "—U——i-z-;)?) = (1 — 2)%%g(2a,2a — c + 1; ¢; 2)

— (1 — 1/2)%*g(2a,2a — ¢ + 1; ¢; 1/2),
2a not an integer.  (26)
Let ¢ = 1 — s and use 3.11.3(4). Then from (19) and (22), we get

f(a,c—~—a—~%;c;—-(—1——%5§-)=(l — 2)*f (2a,2a — ¢ + 1; ¢; 2)

+ (1 — 1/2)%f (2a,2a — ¢ + 1; ¢; 1/2),
—2a =s,s + 1,..,28s — 1, 27

f(a,c—a — i ——(T?—i:)—z) = (1 — 2)*%f 2a,2a — ¢ + 1; ¢; 2)
= (1 — 1/2)*% (2a,2a ~— ¢ + 1; ¢; 1f2),
2a is a nonpositive integer = 1 —s, (28)
4z
f(a,c-a—?z;c; '—Tl—_—z—)?)
= (1 — 2)*~%-1f (¢ — 2a,2c — 2a — 1;¢; 2)
+ (1 —1/2)%-2-1f (¢ — 2a,2¢ — 2a — 1; ¢; 1/2),
2a is an odd integer, 0>222>21—s (29)
Finally we consider relations analogous to (3) and (4). We state

results and omit details as the proofs are much akin to those above.

£ (o e ) = M+ 2% e+ 30 — 3+ 0529, (0)
where ¢ is an odd positive integer, a is not an integer <c.
4z 2a o
(o des s ) = (U979 (@0 o+ 30— 05 4(1 + 0 )

+ (1 + 1/z)%f (a, a + (1 — c); 4(1 + ¢); 1/22),
€29

where ¢ is an odd negative integer, @ = (¢ — 1), 3(c — 3),..., ¢

7 {odes e qage) = (L 9 (v + 401 — 3 401 + o) )
= (1 + 1/z)*f (a, a 4 3(1 — €); (1 + ¢); 1/2?), (32)
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where ¢ 1s an odd negative integer, s = 0, —1, , }{1 + )

fRa 2,0+ b+ 3 -( -2 = 2lab,a + b+ 1,%)
+ (rfsin 203) yFy(a, b, @ + B + 3, 2),

(33)
where ¢ = a + 5 + }1s 2 positive integer, 24 13 not an integer
G{2a 2,0 +b+ 3,31 — (1 — P = Glaba+b+1,9)
+oFfabatbt ki),
where ¢ = @ + 5 + 413 2 positive integer, 22 % 1,2, , 2~ 2,
v = f{a) + $(8} — Y{2a) — ¥(28) + {nfs1n 2ma)
BN LB S Sl & P Y 3
E, 22—k " ,:;_, Bk 69
£Qa,2b,a + 5+ 3L + (1~ 2P = ~(wfsn 2w o Fi{a, B a b+ 1,9,
[£)]

where ¢ and g are as 1 (33)
F@2a,25,¢, 31 — (1 — 2P7) = f(a,B,c, 3)
4-Ca¢ F(l+a—el +b—e,2-62),

where ¢ = a+ b+ % 15 a negative mteger, 22 =0, —L,. ,2¢~1,
C = 01f aor b 1s one of the numbers 0, —1, , ~—[ ¢ |2}, and

L _ T -aIG-—HIN -0 b
C=- =3¢ =9 fa=- -4 .§+Hgs)

fQa, b, c, 41 -U - = —Pfla+ Lo+ haz) @GN

where c1s as1n (36), and a or b1s one of the numbers —§, —3, , 3+ [3]

7082, 640 — (8 - = AT iy

X sFifa,§ —b,a—b+1,1/3), (38)
where ¢ 13 25 10 (36), 20 = 0, —1, ,¢,20d 0 < axg s < 2
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3.13. The ,,F, for Special Values of the Argument

3.13.1. Tue REGULAR AND LOGARITHMIC SOLUTIONS OF THE
GAusSIAN DIFFERENTIAL EQUATION NEAR 2 =

Put z = 1 in 3.6(1). The integral is readily evaluated using 2.6(3),
and so
Iy (e —a—1)
Tc—a T —8)

Jula, b;e; 1) =
¢ not a negative integer or zero, R(c —a —b) >0. ®
From 3.8(2) and (1),
I'leyI'la + b — ¢)

lim (1 — 2)2= ,Fy(a, b; ¢; 7) =

Mayr'e)
¢ not a negative integer or zero, R{a+b—¢) >0, @
We also have
b ) = b
2Fl( n, b) & 1) - (C)'n H (3)
—\n —
(= n X 1) = DL EAZ O @)
()n

where 7 is a positive integer or zero and c¢ is not a negative integer or zero.

If ¢ is a negative integer or zero, say ¢ = —m, and m > n, then

S (=B (=) (n+ b+ 1 ~n),
:éo (——m)kk!k - m! : ! ()

which is known as Vandermonde’s theorem.
We next consider the behavior of the logarithmic solutions to 3.7(1)
as x — 1. From 3.11.2(11),

=yl Na —5) T (b — )

gla, by 1) = & Tle +b5—73) (6)

and using 3.11.2(34), we have

(=)s\ (1 — a) I(1 — b)
Mts—a—ty - O

lim (1 — 5)v+o~cgy(a, b c; z) =

Here and throughout the remainder of this section except in (16),
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¢ =s+1,5a poswve mteger or zero Combinng 3 11 2(8) and (1),
we obtain
ph o )= I TC O 42028 s g gy cp 4,
i +s—a)
®)
where the upper or lower sign 1s taken according as  tends to unity
from the upper or lower edge of the cut from 0 to ® From 3 11 2(13),

6 beoy = BT = B 10 )

A +s<aiQ +:
~ (i —a) — ¥l ~ 8)] [}
where neither 2 nor 4 13 a positive mteger, Ra+by<l+sIas

a positive integer >sand bis d a5 1n(9), then the nght-hand side
of (9) 1s defined 1n view of 24(13) In particular,

— it mt (B — 5)

Gle+nbety=1 e =012, B <-n ()

3t 15 clear from {1) that JFi(} + 2+ 5,5, 1 +5,2) vamshes when
£ | provided that R(s + b} < 0, and hence from 3 11 2(12),

fe+mb e 1) =Gle +mb51) R4 <0 oy

In 2 stmubar fashion, the combimation (2), (9), and 3 11 2(24) yrelds

M@ yb—1—3
la) 1)
X [l + 5) +¢(1) — ¥{a) — $(B)),
Ra+8>1+s (12)

(1 — 5)=<Gla, b, ¢, 2) =

Next weturn tothestuation whena + 8 = 1 4 5 Ifs = 0in 3 11 2(11),
then with the aid of 3 11 2(4), we find

Flebatb,s) _ Ia+b
) “T@re); )

and from 3 11 X12),

Gla b, b,
yp GGkt e A L0 901 £ g 09
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From 3.11.2(4)
lj_r'lg z*g(a, b; ¢; 2) = (=)l (s — D (a)_b)., if s>0,

(15)
lim 8@562 oy s,
-0 Inz
Finally, using 3.11.3(2) and (5), we have
oy =1 —=—m) I +5)
J@bia) =GEHrg fs—m (16)
where ¢ = 1 —s,a = —m,m + 1 <5, and (s — 1) and m are positive

integers.

3.13.2. SeeciaL VALUES RELATED TO THE
QUADRATIC TRANSFORMATION FORMULAS

Put z = —1 in 3.12(2) and use 3.13.1(1). Then

2-2(c — a),

.
Similarly with z = % in 3.12(4) and 3.12(6) we get, respectively,

oI(2a,2a —¢c + 1i¢; —1) = c#0, -1, —2,... (1)

_ mPPa+b+ )
SR

adb+3#£0, —1, 2., @)

21-¢71121(c)
Ilc + a)2) T'[(c — a+1)/2}°
30, =1, ~2,.... 3)

oFi(2a,2b;a + b+ 4 %

Fila ] — a6 d) =

From 3.1(23),

() =g e (LT

and with the aid of (2), the latter is nil if # is odd, while

9, 1,2, @)

——-2"’ ¢ — (f‘})n
1 ( 2c 2) T e+ c#0, —1, —2,... (5)

Similar results for £, g, g, , and G follow from the results given in 3.12.
These are presented below without proof. See Nérlund (1963) for details.
' —arI'¢ —b)

.”1/21"(1 — C) ? (6)

f(Qa,2b;¢, %) =
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wherec = @ + b + }isanegatnenteger,aord =0, —~1, , —[)c)j2],
f(2a 2b,6,3) =0, )
wherecisasn (6), aorb = —3, ~3, , 3+ (3]
](2424-:+l,t.f])=2;?—;(4ﬂ, ®
where ¢ 1s a negative wnteger, @ 1s @ nonposstive integes >cf2,€ =0,
dame—lc—2, 2 Le=1,
e+l +a—al)

flal—ac )= SR — o] (&)

where a 13 an integer, ¢ @ < 1 — r, £ 2 negative integer
In the following formulas, ¢ = s + 1,5 a positive nteger or zero
(=)t it
TG+ I+ Hossc(a~0)*
where ¢ = @ -+ b 4 3, and netther 2a nor 25 1s an nteger

£(22,2,¢,§) = (10

Ot e.b = e e [ 404wy — g0 —o)

2o
— ¥t —8)— .
${t—B) 2m2+£u_k}
c=a+b+} 12 2 an

624,20 —c + 1,6, — 1 £40)

2 B
=m~l—_—‘)[ﬁm~2h\2+¢(l+d+¢(l)

—H1 =)~ + 0
— s + 1 —20) L (1 —2a)],
%rL2 )

{~=Y12 W5t 18 (g — )

#2028 —c + 1,6, ~1 £i0) = o

etiae, (13)

where 2215 not an mteger <25 + 1
(28,28 —c+ 1,6, ~1410) —g(22 22— ¢ + 1,¢, =1 —10)

(1) gt 22222

=meiprati—a M
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and this formula is also valid if g is replaced by G.

sl /22

(s + 2-a)2] I'[(s + 1 + a)/2]

X [P(1 + ) + (1) ~ 2f(a) + = tan #[(s + 1 + a)/2],
a#0, 41, +2,.., (s-1),s. (15)
gla, 1 - a3 i 1) = ()l m1/2-520](1 - s~ a)j2] I{(a- 9)/2],

Gla,1-a;¢;3) =

a is not an integer. (16)

sl P[(1 - s~ a)/2] i
F[(s+2—a)/2] e€xp [:F 7((1—*—5—’—1)],

(a -+ s) is not a positive integer. (17)

gfa,1-a;¢;1 £10) =

3.13.3. SpECIAL ,,F)’s, p > 1 OoF UNIT ARGUMENT
Write 3.8(2) in the form

(1 — =)ot Fi(a, b; ¢; ) = oFy(c — a,¢c — b5 ¢; 2), ¢))]

expand both sides in powers of 2, and equate like coefficients of 2™
We get Saalschiitz’s formula

( —n,a, b l ) - (¢ —~a)ulc = D)
2l l+at+b—c—mn (Onlc —a—b),’

n a positive integer or zero. (2)

We also have

—m,n -+ a,b
al'e

) {(c —bla—c+1),
cat+b+1—c

O+t ri—o, " 3)

Ifin ,,,Fy(a,.y 5 b, ; 5), the parameters are such that
p+1 b
1+ Y a=)1b, 4)
1=1 j=1
then the ,,,,F,, is said to be Saalschiitzian. Thus the series in (2) and (3)
are Saalschiitzian of the terminating type. If

14-a=b+a='=b,+a,,, (5)

then the series is said to be well poised, and if all but one of these
equalities are true, the series is said to be nearly poised. By Dixon’s
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theorem, see Bailey (1935) or Slater (1966), every well-potsed 4F; of umt
argument can be summed Thus,
a,b,c [l)‘r(l+§a)r(l+n—b)
(1 +a—bt+a—ci? TQ 4T+ 3a~b)
Fi+a—aT(i+3a—
(lyia—gI(l+a
Rie — 25— 2) > —2 (6)
Two other theorems which sum 2 3F, of unit argument are
,F( abec [|)>T(Q)T(i+r)1‘(§+%ﬂ+ib)
bR R R N A S Y AT R )
T —ja—4b+r)
A rara-pLa’
R —a—B>-1 @

!Ft

al—a,

( f241—~ /{
= A ) M2 +1-f)

2T+ Ha Y- THe RN+ e e + AN TR -2 110

R>0 (8

Equations {7) and (8) are due to Watson and Whipple, respectively
(see Bailey (1935)] Now the lefi-hand side of (8) 1s meantngful if ¢ 15
2 negative mteger or zero In this event sts value 15 not given by the
nght-hand side of (8) unless @ 1s an integer or zero as ponted out by
Dzrbasjan (1964) who shows that

nal—a ”‘(%ﬂ+§/)-1lﬂ~§f+l—ﬂ).
F( T = Ui —27 -7 @
"The following account of transformations of ,F, sertes of umt argument
18 adapted from Bailey (1935), see also Slater (1966) The first formula s

‘F:(n,b,c ) - NI I . —a,/wa,xll)'

e THTEFHTE ¥ >\ s+bs+c
s=etf—a—b-e s£0 (10y
A second 1mportant relation 1s
,Fg( b, c 1) I(l — a) () I(f) e ~ &)
of Fe—tTf—HIi+b-a) T

by —e+Lb—F+1
X‘F’(l—{kb—c,l-}bﬁa 1)
+ 2 sumlar expression with b and ¢ wnserchanged (1)
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These are two of many relations involving 3Fy’s of unit argument. Let r;,
i = 0(1)5, be parameters such that

Yr,=0 (12)
1=0
Let
Gmp = F 1T 1y, Bon =141y —~1,, (13)
Fyfus 0, 0) = [Tetse) T(Bus) Tt oFx (5“5 “ | 1), (14)
Foft9, ) = [Deune) TBus) TGl o2 (755 “5” %= (1), (19)

where the subscripts u, v, w, %, ¥, and z are distinct and all must take
on one of the numbers 0, 1,..., 5, and where the «’s and B’s are defined
in terms of the parameters g, b, ¢, d, ¢, f,ands = e+ f—a—b —cin
Tables 3.3-3.5. Observe that (14), (15) are symmetric in ¥, , and 2 and
also in ¢ and w. It may be shown that

Fyfa; vy, wy) = Fyfu; 03, wy), (16)
Fn(”; Y1, wl) = Fn(u; Vs, w2)7 (17)

and the condition for convergence of (16) and (17) is R(a,,.) > 0 and
R(xy,,) > 0, respectively. Observe that F, comes from the corre-
sponding F), by changing the sign of all the 7’s.

TABLE 3.3¢

EXPREISSIONS FOR o’s AND f's iN TerMs oF g, b,¢,¢,f (s=e+f—a—~b —¢)

« B
&y = 1—¢ Qyag = § By =2—s—~a By = s+b Bo=c¢e
Y3 = 1 —b Qg = €—C Boe = 2—s—b B =1—a+b Bu=1+btec—f
O = 1~f Fa o =f—c Bos =2—s5—¢c Bag = 1+4b—c Bee=1+a+e~—f
sy =1—e4a og=c—b Pu=2—¢ Bs=1—a—~c+f Bu=l+atb—f
Upey = | ~a aggs = f—b Bos = 2—f Bus = l—a—c+e By =1+e—f
%u = 1~f1td ayus=a Bio = s+a B = s+c¢ 0 =
Ty = l—e+b  oagy=e—a Bio=1+a—b By = l+c—~a By =1+b+c—e
= 1~f+c ops=f—a Pu=1+a—c Ba: = 1-b+c Bs: = 1-+a+tc—e
Oy = 1—e+c s =10 Bu=1~b—ctf Bayy=1—a—b+f Byu=1+a+t+b—e
Yuy =t Xy = € Bis=1~b—cte By=1—a~bte Psy=1—e+f

® From W. N. Bailey, “Generahzed Hypergeometric Series.”” Cambridge Univ. Press,
London and New York, 1935, Reprinted with permission.
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TABLE 344
1 D
Fae o= s 1)
v Numerator parameters. Denorunator parameters
a5 a 5 c « s
Fy(0} 23 . ¢t e  f-a s+b ste
14 a =b  e—c 3 1+a
02 l—e+b 1=f+b 1-a 1+b a 2~s-a
F() 04 11—+ ~f+b 1-f+c 1+bte~f 2-5-a
(FADamdFL (2,3 s f-s t-a 1 oatd teate
arcof thus type) 12 4 5 e~a  I—f+b 14bte—f 1+b—a
a5 I-r b c 1+bte—f Vibte—e
01 i-eta 1 b 1 2 1f—b—c
FA8) 05 1 era loetb 1 ete 2-s t—etf
(FiHmofthaaeypel 12 f-c 1 ¢ + 14f—e—¢ 14f—b—¢
15 l-eta f~-c el t+f—e  1+f 3~¢

*From W N Bafey Generalized Hypergeometric Senes  Cambndge Umiv Press
London and Mew York 1935 Reprnted with permussion

TABLE 3 5*
1
ree oo = i i)
o @  Numerstor parsmeters  Denomunator parameters
45 1-a 18 1 ¢ 2~ 2-f
Fu) 2,3 1—-2 1-~e+a 1-ft+a 2 b 2—5—¢
14 1-a 1 etd l1—ete 2-e 2 1-a
02 e=b f-& a 1+a—b s+a
Fu1) 04 g P fe 1~b—ctf 1ta
[F2) and P-(” 23 l~eta 1-fta a 1+a—b 14+a~—c
are of this type] 2,4 1-b 1 eta j-d 1=b—c+f 14a ¥
45 1 1-b ) V—b—etrf 1 b-ide
01  ea s . . Afibte
Fuay 0 5 et a e & ¢ b 1he—f
FuSisofthisrepd J1 2 d—fte ¢ 1mr  L—ftatc I—fthte
15  e—a ! fte 1—f+b  1+e—f A—ftbte

*From W B Balley Generalized Hypergeometnic Senes  Cambndge Univ Press
London snd New York, 1935 Repnnted with permussion.
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Thus (10) is the same as
F(0;2,3) = F;(0; 4, 5) (18)

and (14) states that all ten of the functions F,(0; v, ), v, w = 1, 2,..., 5,
v % w, are equal to each other. We therefore refer to these functions as
simply F,,(0). Likewise, the statement

Fo(2;1,5) =F,(2;3,4) 19)
means that

7 e~a,l1-f+b1-a II _ D(f-0)I(l-a4+-b)I'(l-a-c+e)
32(l—a—%-b,l—a—c-{—e )_I’(e—a)F(l—c+b)F(1—a—c+f)

f-¢,1-e4b1-c
I—c4bl-a-c+f 1), (20)

x 3F2(

and by a change of notation this is equivalent to (10). We also have that
all ten of the functions F,(2; v, w), v, w =0, 1, 3, 4, 5, v 5= w, are equal
to cach other, and we refer to these functions as F,(2).

We next consider the relation (11). In our present notation this becomes

sin 1’1‘323
LGN

F,2) _ F,(3)
I(ey30) T'(ot135) T'(0345) I(xy4) I'(ey05) T(etg5)”

Fi(0) = (21)

Similarly, by changing the signs of the 7; terms,

Fy(2) _ Fy(3)
T(etgo5) I'(ctgna) T(cepro) T(ogas) T'(ctgas) I'(etpra)

sin wf,y, Fof0) =

m0145)

22)

Upon combining three equations like (21), we get

sin 7B, F0) + sin 7, Fod)
Togi0) T (o013} T(%23) ’ T(etyg) T'(etyag) I(ctens) i

sin 78, _
F o) Tloeg) Ty 7o) =0 (23)

and with a change of notation, we have

sin wf, sin By
T(ctyi5) Ictgqs) I (et145) (0 + T{etgss5) T(gas) Tctgys)

sin 7By, B
+ T T oy P48 = 0. (24)

Fn(4)
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Now ehmunate F,(2) from the equation of the type (21) which connects
F,(5), F(0), and F,(2), and from the equation of type (22) which
connects Fy(2), F,(0), and F,(5) Then

)
T T o) Foa) T T
S0 mBosFa(0)  RFS
ST R Tand Tl — o)
TR = (St 70y )51 12y ) (510 Torgys)
+ (stn wagg)n e ), (25)

and likenise

F.{0)
Tlaa) ) Taua) Do) T Do)
+ s Bk, (0)
T ) Tlrss) Noend) Tol)

All the three-term relanons between the 120 hypergeosmetnc senes are
typified by (21}-(26)
To further 1llustrate use of the tables, consider

= KF(S) (26)

abe Tl —a—5 ab,f —
e ef ") =T a5 (a+b-t<:l,/ ')
NI(f)[a+b—Te+f—a—b—0c}
I I(f~oT(e+f~-a—"b

¢ ~a,¢6—betf—a—b—c
x& (T e

This 15 equualent to

F0.4 5= Fif5,0.3)

Ld Tees)
sin 7y, INogs) Noar) o)

+ Fo(3,0 5 23)

kid Tlags)
s0 7y Tores) Tages) T ages)
which in turn s the same as (21) of there we interchange the indices 22nd §
Suppose that m (21), 6+ f = @+ b+ ¢ + 1 Then the 3F; on the

left 1s Saalschutzian and the first series on the nght becomes a ¢Fy , which
can be summed
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Thus,
7 a,b,e+f~a-—b-—1'1) _ I I(f)T(e—a-b)I'(f-a-b)
3 2( e,f T Ie-a)l(e-b)I(f-a)I(f-0)
. I I(f)
@Fs-9T@I® TE+7-a=b)
e—a,e—b,1
X affy (e-a—b—}—l,e—}—f—a—b,l)’

et+f=a+b+c4 1. (29)

If a or b is a negative integer, the second term on the right-hand side of
this equation is nil and we get Saalschiitz’s formula (2).

If ¢ in 4Fy(a, b, c; ¢, f; 1) is a negative integer, say ¢ = —m, we can
reverse the series {see 3.2(3)] and with «y,; = —c¢ = m, we have
Tongg) Tot1os) F(0) = (—)"T(ctp2a) I to13) Fu(3)- (30)

This is a degenerate form of (21). In all there are eighteen terminating
series. Three of these are F,(0; 4, 5), IF,(0; 3, 5), and F,(0; 3, 4), which
when reversed give F,(3; 1, 2), F,,(4; 1, 2), and F,(5; 1, 2), respectively.
The relations between the eighteen series are described by

I(otyan) Nctygn) I (oy05) F1(0)

= P(C‘oga) F(QOM) F(“OyS) Fm(3 "'g)v g = l, 2: (31)
I(ty3) T'(ageq) T{ay0s) F,(O)
= (=)"T(oqon) Nogn) Deoun) Full), b =3,4,5. (32)

The other series, such as F,(0), do not give any specially simple formulas.
For an application of formulas (11), (14), (16), (31), see the discussion
surrounding 8.2(60-68).

Some miscellaneous results now follow. From 3.2(7),

a, b — {a) (b} 3)(B)m —m,l —m—c 1

Fm ( ¢ I 1) = Z:o ((c)kk! = ((c),,.m)! af2 (1 —m—a,1 —m—25b ) :
(33)

Ifc = a 4- b + 1, the oF, is Saalschiitzian and so may be summed by (2).

I]f ¢=a-+ by, o0 as m— o in view of 3.13.1(2). We now prove

that

b Fa
3 (55 11) = Fayry 10+ 1) + 900 — o) — )

o1 — a) (b+l,2—a,],l ])i

T Em AN bt m+2,2,2 G4
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and so from 2 11(8),

_ I +17)
w0 11) = i i o 1+ 941) — ) — ey

1181
FEaT
(35 + 11 —~ 2 —a) + 1}
R T 1 +O0+m+ 1Y)
(335
Lete > 0 Then
b a5 1) (@ma@ea
y"(a+b+s‘l)=’p‘(a+b+s‘l) 7T 5+ Ompsl ot
atmtLbrmt1,1
<A ey w21
and wsing 3 13 1(1) and (10}, we obtawn

a,b [‘ _I‘(a+b+e)l'(s+l)[
+b 4« )‘ < DL ED)

_ (O
T@IG+m+1+al+D
)i

Next sphit off the first term 1n the expansion of the Jatter ;F, and Yet e—0
Then (34) follows

I n 3 ,F, form, a exceeds a
parameter by a posttive integer, say m, the ,F, may be expressed as the
sum of (m + 1) ,Fy’s If the latter can be summed, then so can the ,F;
In dlustration, since

+el—ae

X’F‘(b+m+1+(.l+s

A bdc£+ 1|z) _ f (a)k(b),(t Trtk) E (adbtz)

b % (a +dl+bl+ 1 3, 06
P a,bc+ll &I —a—b) b 3
A\ die I‘(d»a)['(d»b)[ ErEri—al*
Rd—a—b>1 [€5)

This 1s a special case of 9 1{34)



3.13. ,,,F, FOR SPECIAL VALUES OF THE ARGUMENT i1

The formula

af2 (d+a’1?,cc+l 3)2:6:2-1” (da—{-bl ) c—‘idsz (dfzycb-’;ﬁ z)’

(38)
can be used to prove
~n,n+2v,p+v41 n 2)nl(v —p — 1),
sFe ( v 1lptv+2 ) BT ) O T W >((.3;9)
By integration of 3.1(13) and 3.6(1), or otherwise, we get
N a,b 1]\ (c—1) a—
safe (7, ”)‘(a~—1)(b—1)[2F1( c—l I > 0)
and so
a, b, 1 . {c—1) Fe—NI{c—-a—b+1)
3F2(€,2 1)_(0—1)(b——l)[ I'(¢c — a) I'(c — b) 1]'

a1, b#£1, R(c —a—b)y>—1. (41)

By L'Hospital’s theorem,

aFg(“'l'l )=z )[xﬁ(c——l)—x//(c—a)],a#lR(c—a)>0 @2)

¢, 2 {a—1)
L (001 = e-nwe -, R > 1. “3)
Again, integration of (40) leads to
s (@D 1 2c —2), L (@a—2,b—2]
2 (0 |7) = @ = 2.6 — 2), B B R
(e — 1)
TE-ne-1 “
which in turn yields
L (a,b,1 2 —2); [Me—2)Ic—a—b+2)
£ (5 11) = @ = 26 — 2, [ e~
2 —1)
RGN

a1,2; b£1,2; Rlc —a—b) > 2. (45)
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Results for a = 1, 2, ete, can be found by use of L'Hospital's theorem

Next we show how to evaluate a certan termwnating Fy of unit
argument The techmque seems novel 1n this context, and we develop
the process 1n <ome detai]l The result 1s due to J L Fields and
Y L Luke We prove that

(rte—1+2
*..‘/4-111————————- Hrtf)Ye— 1)
‘F'( :JJ#:?L/ a ) Tt =1
napositive mtegee or zero,  f(z —afn+e—1) %0 (46)
For lar values of the 10 (46), limuting forms of the

left hand side must be taken The same 1s true 1n what follows Consider
7,6, d 4+ ks h

it 11

Clearly V() 15 a rational function of = with poles at z = 0, 1

To develop the partial fraction decomposition of F(z) we pmcced as
follows 1f

Via) = (—a B @n

way = SLEEL o,

then by restdue theory
x
- {=¥(d + hr),
yz) = '24 [E=rrIa=r
so that
s CEMOWe) 5 () £ Ay
v - 5 e L e T
Upon iterchanging the order of summations, we find
3 B + B,
Y= L e miner
r—me+brte,dt 4 Ur
‘F( rdertfir+1 ])
Next we spectahize the parameters so as to obtam a particularly sumple
form for g, Thusletc =1, and b = f-+ 1 Then from (37), we find
_Tr+aglnte—d—rsh+1)
ST v e —d~rk)

(48)

x[1- (r —m)d + (b + 1)) ]
CHNn+rd+T—c+R 1)
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Now set
d4-r(h 4+ 1) =p(r +f), —ntd+1—etrh+1)=p(r—n)
p=h+1, r=12,..,n—1.
Thus with
h=(—f—=Dla+f) d=fln+e—1n+f)
we have

¢- =0, r=01.,n—1, g,=1,

and (46) readily follows. The following special cases are worth noting:

; (—7I,B+111,z+23 l).—z(1l+2ﬂ) 7l=0712

= 3Bz —u) — ) 0.
W+ 284+ 1,81 —= 28(z —n)’ yoery Bz — ) #

(@9)
Al B A 3 ) n = . —n 0.
(712 ) re ey O fem g
FELLOED AN Ly s
AU W= TraE

FA+1D#0, [A]>1o0r |A] =1 and REQ + )(f + 2))) < —1. (51)

Equations (50), (51) are the limiting forms of (46) with e — o
and e = & + A, n — o0, respectively. Actually (50) is (51) with
A= —(n+ f)(z+f). Note that the limiting form z— co gives
nothing new as (46) is symmetric in the parameters ¢ and 1 — z. Also
f — o0 is not recorded as it is a special case of (3). If in (50), we let
n — o, we get the curious result

1,1
(AT E ] —Ewn) = =sn 10, (2
and with f = 1,
21 — 3 —1 —2) = —x or JFy(—1 — 5,1 —2;1 4+ 2) = —zel+=. (53)

o 1)

for m a positive integer has already been given, see 2.9(11-15). In a similar
fashion if m > o, o an integer > 0,

The evaluation of
F (—m, |l 4 a,

¢
P4+1% p

[Iis @ +otp—1+487
0N = T e Ta =D

]._.[ (\ Ta:)

1=1
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2 polynonial in x of degree (p + m — o), then the mth difference of O(x)
wsnlifm>m+p—oorp < o, and this leads to the result that if ¢
and m are 1ntegers,

gl wen (RS )0, 0<p<osn @

Note that 2 9(15) 1s the special case o = m From 12 2(40, 41) with
t=72,8=m+ g and w, = @, we have

(a) ~mym 4 opy 1 4 ay
(e PR WA AP b

. Pmtu-a)ml o, (”"P'"'*""*""*“""[l)
G-mITRm +p £ Imdptlmtp-a,

55)

Note that (54) and (55 are the same when o = p + 1 and m > p -+ 1
In connection with (54) and (55), see 12 2(28-29) See also 12 2(12-15)
and 12 4(5-8)

For a Saalsch +Fy of umt Bailey (1935) has proved
that
23 %) ) _ (p-2)lw-2), - u-x8 Y2
‘F=( PR ll)‘ @)a ‘F’(u,l—v+z~n,l—w+t—nll)'
r+y+ztl-n=utotw 6

For some other transformation formulas for ,,4F,’s, p > 3, see Bailey
{1935) and Slater (1966) See these same sources for the summauon of
some ., Fy's of argument other than umity For nstance,

2 4 ta,bc fl +a—b—2&)
Bl bl ) =g @

Frnally from 2 5(1) and 3 6(1), we have
oFi(1, 28,22 + 1, —1) = alfle + §) — §(a)] (s8)



Chapter IV CONFLUENT
HYPERGEOMETRIC FUNCTIONS

4.1. Introduction

In Chapter III, we gave some discussion of the F\(a; ¢; &) hyper-
geometric series, and in 3.5 we showed how this series follows from that
of the ,Fy(a, b; c; z/b) by the confluence principle. We remarked that
this concept is useful to deduce properties of the ,F; from those of the ,F; .
In particular, see 3.4(28, 29), we used this notion to deduce two recursion
formulas for the \F; . In this chapter, we set down other properties and
concepts useful for our approximation studies. Our discussion is rather
curt, and proofs for the most part are only sketched. For references,
see Buchholz (1953), Erdélyi et al. (1953, Vol.I, Chapter 6; Vol.II,
Chapters 7-9), Luke (1962a), Slater (1960), Tricomi (1954), Watson
(1945), and Whittaker and Watson (1927). See also the references noted
at the end of 3.2.

4.2. Integral Representations

The analog of Euler’s formula [see 3.6(1)] is

LHlases) = m%lz-—;)- f: estta-1(] — tye-a-14y,
R(e) > R(a) > 0. (I)

This is a special case of 3.6(10) and may be used to prove Kummer’s
formula 4.4(12). The combination 3.6(13) and 3.1(10) gives

- 2I(y + 1) 5
F.(o; s =A45?) = =1L ST —=2ud, 20—
oy v + 1; —A%4z7) T2y lo e-=wiyo—-17 (Au) du,

R(e) >0, R(z%) > 0. @)
115
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From 3 6(19),
o
A3 Fyfa, 6, 2) = Qe T eee(h — wjtyed,
.
Aredl A#£0, R(c)>0, y>0 [ag(l —zfpli <, @
and the Mellin Barnes integral representation [see 3 6(28)] 1s

oo a4 ) T =2
Fle+9)

0 >y> —~Rfa), |arg(—2)] <2 [0}

r:;,p,(a £2) = @m) 1 J'

‘The formula
2 MEE 4 ¢ — 1) — 2(8 + alfferte® (1 + t)e-a-3] = —(@oe) ettt - )],
5= zddx (5)
shows that
f e #its Y1 4 g)ee 1dr {6)
3
1s a sofunion of 4 4(1) 1f C 1s erther closed on the Riemann surface or
termumates at the zeros of e *#2{1 + £)** Thus we can recover (I}
If R(a) > 0, R(z) > 0, a chorce for C 1s the mfinite ray starting from
the ongin Hence a solution of 4 4(1) 1s

Ha ¢ 2= [Ty | Tene i) oty otdl, R@)>0, R@>0 ()
o

Ve can extend the domain of definttton by retating the path of integration
Thus,

Have = (ran | eite 31 41y 1,
0
R@) >0 (8l<m {@+agal<a, e |agz|<3m2 (8
Now,
.
rerer=@m | (4ea-a,N-grd  0-y>Re—a
©

and if this 1s combmed with (%), and the arder of wntegration s inter-
changed, which 1s permussible when y + R(a) > 0, we get

Hare,2) = (mla)] * | ”:’(1 +a=a, I~ [ e syrro-tgr s, (10)
e .
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and so from 2.1(2),

s ei2) = @izt [ (@, (e - T(=s) 52 ds, (1)

and with a minor change in notation,

oo rna [ la ) (=) (1 —c—5) 2
#la; ¢; 2) = (2} f,_,.,,, T@I(a —c+1)

—R(a) <y < min(0, 1 — R(c)), {arg = | < 3#/2. (12)

ds,

In the derivation, more stringent requirements on the variable and
parameters are needed, but these may be relaxed by analytic continuation.
Also, the conditions imposed on the parameters may be further relaxed.
As in 3.6(28), (4) is valid for any y if @ is not a negative integer or zero,
and if the integration contour is indented when necessary so that poles
due to I'(—s) lie to the right of the path while those due to I'(a + s) lie
to the left of the path. Again, (12) is valid for all y as long as neither a
nor | 4+ @ — ¢ is a negative integer or zero, provided that the path of
integration separates the poles of I'(a 4+ s) from those of I'( —s)I"(1 — ¢ — ).

4.3. Elementary Relations for the Confluent Functions
The following formulas are either special cases of results in 3.4 or may

be deduced from expressions given there by use of the confluence
principle.

A ey @a g (@+n]
dzn S (©)n iy (c +n l ")‘ 1)
841
@] =6 -t Darnan( 20T 1)
an
Zon B 6 3)] = (@) 3070 1 Fy(a + 5 65 %), (3)
- )
FE e A@an = 6 —n+ Dt (T
. (4)
‘ R a--n .
g e n ()] = @ e e 2 (s

dar —
o T e B 6 2] = (e — @ st (07 ), ©)
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FirBona = X eer (21 )

Lpeg=e—nt ekl 79
dz* o vils 4 l —n
®
For contiguous relations, we have
(e~ a)Fifa=) + 2z —c +2)Fy ~a,fifat) =0, (9)
—de = ) Fife—) + e — 1 +3)1F, — e —a)a,Fie+) = 0, (1)
da+2).F; — aeFiat) — (¢ —a) ety =0, ()
o\F) — e yFfa—) — 2 Fle) =0, (1)
(€ —a—1),F +afyfad) — (e~ 1B =0 (13)
(@a =14 2),F +(c—a)Fa—) —(c— 1), Ffe—-)=0 (14)
Clearly, if m and 7 are mtegers, (Fy(a + m, ¢ + n, 3) can be expressed
as 2 linear combination of ,F; and one of its contiguous functions with
coeffictents which are rattonal functions of 4, ¢, and z Note that (1}8),
or the latter m combmation with (9)}-{14), gve mse to differential-
difference properties
The following formulas for the # function may be proved from

pprop mtegral rep n 42 or from the representation
45(2) and results n {1)(14)

B o, e,5) = (<Pl@dle +me 7, 2) a5

;T: [+ Wa, ¢, )] = (=1 + a — ), 5™ Yfa,c —n,2) (16}

L e, e, 3] = (@1 +a — a2 la 4 m.,3) an

L bergta, 8 = (F e e ) a8

2 feraeigia, e, )] — (=) 5 M — m,c,3) )

T:Z-; [e2° Wa, e, 5)] = () etz Yl —a),fla —n,c —n,3) (20)

o) — (22~ ¢ + 2 + ala ~ ¢+ Difa+) = 0 ey
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(6 — a— 1) ple=) — (c — 1 + =) + =h(c+) = 0. (22)
(a + D) + ale — a — 1) Yla+) — p(c+) = 0. (23)

(c — a}p + Yla—) — zh(e+) = 0. (24)

b — apa+) — P(e—) = O. 25)

(@—1 + 2} — dla—) + (@ — ¢ + D gle—) = 0. (26)

Here y(a4-) stands for §{a 4 1; ¢; 2), etc.

4.4. Confluent Differential Equation

The linearly independent solutions of
[eD% -+ (c —2) D —ajw(z) =0, D= djdz, (1)
or

[8(8 +¢ — 1) — 5(8 4+ a)] w(s) = 0, S = zD, (2)

are proportional to

z) and w, = 31-¢ F| (] ta—c I z), (3)

a
wy = iF (c 2—c¢

provided c¢ is not an integer or zero. Sometimes the notation
D(a; ¢; 2) = 1F4(a; €5 2) )
is used (see also 4.9). It follows from (1) that the differential equation

20:/1 "

hy" 41— +2f'h ~ T hi' el

+ }h’ C4r)e—m+if “‘“; D 28y

— 5 G —atryly =0

is satisfied by

y =g el F (Z l h(z)) (5)

where f = f(=z), ete.
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As remarked m 3 1(10), the Bessel function of the first kind J.(z) can
be expressed i terms of 2,F} , and the latter may be viewed as a confluent
form of the \F, The function J,(2} can also be expressed 1n terms of
a,F, We have the two representations

2 ey “
2o = B R b1 - 1) = Rt L,
2y e “
_ m2yem .
) = gy S e L 2 ) o
B e R i
Otherspecial cases of confluent hyp functsons and

references are noted 1 4 9, and properties of these and Bessel functions
are hsted 1 Chapter VI Here we remark that the differential equation

. {28k kk
P N R R
—1 . ¥ ,
+ I 2y en - )
+x Erg)rarrfi-R)r=0 ®
15 satisfied by
¥ = zPe KIC R, ©
where y = y(2), etc, and Ci(z) = AJ(z) + BY,(z), A and B are
independent of %, and Y,{z) 1s the Bessel funcrion of the second kind
We return to the salutions of (1) If @ = —m, m a positive integer or
zero, and ¢ is a negatrve integer such thatm + ¢ < 1, then 2 well defined

solutron of (1) 1s

C oy @t § (st
fonen) = ) R = BT o

=1 —merm
= Lz bompen

T bl ¢ = m, —x%)

¢=1—3 sapostwemteger, m<s {10y
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and this is independent of w, . Again if @ and ¢ are positive integers,
a < ¢, then

g~

Al +a—c2—ca)=2z")

(m — s)=*

izo (1 — skt
m — 1)iz=m
= L(—S_T)I—)r“e olm — s, m; —z71),
a = m, m a positive integer,
c=1+s5, s a positive integer or zero, m<<s-+1, (11)

is a well-defined solution of (1) and is independent of w, . Observe that
(10), (11) are confluent forms of 3.7(14, 15), respectively. A thorough
study of the complete solution of (1) is deferred to 4.5.

From 3.8(2) and the confluence principle, or directly from 4.2(1),
w, = JFy(a; ¢; 2) = & Fy(c — a; ¢; —2), (12)

w, =21 F(1 +a—¢;2 —c;5) = 21% Fi(l —a;2 —¢; —=). (13)

This is known as Kummer’s transformation.

4.5. The Complete Solution

If ¢ is not an integer, then 4.4(12, 13) are independent solutions of
4.4(1). The function w, = y(a; c; 2) is also a solution, and from 4.2(12),
we see that

wy = Yla; c; 2) = 2171 + a — ¢;2 — ¢; 2). 1)

These three solutions cannot be independent. If ¢ is not an integer,
the poles of the integrand in 4.2(12) are simple, and evaluation of this
integral as a sum of residues at these poles gives

e =) o, Te—1)
w:!""ll‘(ntc!"')—F(1+a_c)wl+"7w—(’(;)‘_w2’
2
1 —
=] mesenl 117

If we replace a by ¢ — @ and =z by ze~'", ¢ = 4-1, and use 4.4(12, 13),
then
Il — o) T(c — 1)

wy = eP(c — a; ¢; ze~ien) = M=o " Tc—a ey, (3)
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and by ehmmanan,

waa{_ T2~ ) I2~e)
RN B (e AR e @

1In {4), (5), the convention

« = sign((z)) = t o Kz)>0,
sign(l( %) ©

= of Iz) <0,
1s often used

Thus any two of the four quantiies e, , %0, , 2z, , and =, form 2
fundamental system if 2, ¢, and ¢ — 2 are not wtegers If a 15 a negauve
nteger or zero, t, and ey differ only by a constant multiple The same
15 true for oo and oy 1f € — @15 2 positne integer Again if @ 15 2 positive
mteger w, 1s a constant multiple of &, , and Likewse for w and &, of
¢ — a 15 a negaune wteger or zere If ¢ 15 an integer, zero included,
either &y = 2, or one of these 15 not defined If ¢ 15 a negative 1nteger
of zero,say ¢ = 1 —n,n = 1,2, 3, ,then

- {2
A Ra 1‘(,) )

2 Fa a4,z @

satisfies 4 4(1), but this 1s a muluple of , , and so we get nio new solunon
The derrvanon of (2) assumes that ¢ 1s not an mteger, but clearly this
15 not essential, for by continwity 1t holds alse for mteger ¢ Indeed, as
1n the ,F, studies, we can use (2) to denve a loganthrmic solution of 4 4(1)
when ¢ 1s an mteger For the present situation, we can use the develop-
ments for wy = W {z) [see 3 10(3, 4, 20)} provided we treat all terms
mvolving 2, as empty That 15, if 2 term involving @, appears as a
product, treat 1t as umty, and if 1t appears as a sum, treat it as zero
We find

—{a [ +35,2)= l‘(a) Z (ﬂ (‘ — 1B

+:.(#)‘:‘;){[r+lnz+~/f(ﬂ)‘¢(l +abE( 58

+ 5 e+ )~ 1 45 B+
—WL+R KD @

where @ 15 not a negative integer or zero and £ 15 a posiftye INtEgeEr OF Zero
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An alternative proof of (8) follows from 4.2(12) in the same manner
as 3.10(13) follows from 3.6(28); see 3.10(14, 15).

If a is a positive integer and a <5, then only the polynomial part
of (8) remains. In this event, w; = ¢(a; 1 + s; 2) is a multiple of w,
truncated after s terms as may be deduced from (2), or with an apparent
change of notation, w; is proportional to 4.4(11). Thus the restriction
on a is not essential. The point is that we have no logarithmic solution
if a is not so restricted.

The logarithmic solution for $(a; 1 — s; 3} follows readily from (8)
in view of (1).

In a similar fashion from the developments for wg; = V{(z) [see
3.10(1, 2, 13)] we get

wy = eP{l + 5 — a; 1 + 5; ze7)

(=)= 2 (a— s)is — 1 — BI(—=)zt
T Fs—a A Al

+ s!—.T(‘(_l)———aj ;[‘Y + In(ze~*") + (1 — a) — (1 + )] 7, (

)

+ Z (a)k" (Wla + k) — (@) — (1 + s + &) + (1 + )
&y (14 s)k!
—g B+, ©)

where a is not an integer or zero and s is a positive integer or zero.

If a is a positive integer, then w, is a linear combination of both w,
and w, unless @ > s, in which case 2, is a multiple of w, . This follows
from (2) and may also be deduced from (9). If @ is a negative integer
or zero, then from (9) and 2.4(13, 14) or from 3.10(18), we have

Sm—s S=1 ¢ o 1 Ve
Wl + 5 4 my [ + 53 ze7tem) = ()= (= — (s — 1 =~ BHY{—)*=

(m + s)! fard ki
+5h ;fy + In(ae7) + 4(1 + m)
— 91+ 9 ()" <)

+ % R =B =L+ )

— (1 5+ + P+ ) ~p(1 + ) + (1)
m b (k~—m-—-l)!z’~

R Wy s 2,

where m and s are positive integers or zero.

(10)
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Srmilar expansions for eg{l — s — a1 — 5, 267 can be obtained
from (3) and (10) 1 view of (1)
Let 1V, denote the Wronskian of the solutions ; and @, Thus,

Wy = Wi, , w)) = wfz) w{z) — ,(s) ufz) {1y

Also et
B = e 12
Then,
By=(1—0)B, W= — F{%B a3
T
W = _((_),‘mg [o— T(‘_":?’-E)B (19)
By = — r(( (i’a)E Wy = i [ sinofe — o) +smna)  (19)
casm ()
46 -Type i for the Log:

461 INTrRODUCTION

The Kummer relations for the ,Fy and the ¢ functions which are
solutions to 4 4(1) are given by 44(12) :nd 4 5(1), respectively Here
the ding relations are developed for the | h solutions
to 44(1) Agan the analysis 1s due to Norlund, and closely parallels the
developments for the ,F, case (see 3 1)

462 Tue Cast Warre ¢ Is A FosiTive InTecer
Throughout this section we assume that
¢=1s+1, sapositive ntegerorzero, a1 2 s m
unless stated to the contrary Let

,. 1w
Gl 2) = (i3 Qoo LMyt

‘z(a-l)’pl(lﬂn -7 @
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G(a; ¢ %) = Gu(a; 65.%) + Z (s(a-i—)kiz) 3]

X {lnz +d(a+ k) —gla) + (1 +5) — (1 + s + &)
— (1 + &) + ¢}, 3)

gla; ¢; 5) = Gy(a; ¢; 2) + i (@)

= 6 + Dkl
X {lnz+ (@ + k) — (1 + s+ F) — (1 + k)} @)
In (3), (4), |arg 2z | < =
e 5 9) = Gaii2) + 3 ey
X {In(ze7m) + (1 — @ — k) — (I +s + &) — (1 + &)},
€ == 41, —(1 —&)r <<argz < (1 + &)m. (5)
Then,
gla; ¢ 2) = Gla; ¢; 2) + [h(a) — $lc) — H(1)] Fy(a; €5 2),
larg 2 | <=, (6)
&1(a; ¢; 2) = Gla; ¢; 2) + [-8im + (1 - a) - (c) = §(1)] 1Fa(a; ¢; (z7)5
elaie; =) — glas 3 5) = :f;fm Fy(as 3 ),
=41, —(1—8n2<argz<(+8) 2 (8)
and from 4.5(8, 9),
gla; c; z) = (=)l (@ — ) d(a; 1 + 53 2), ©)

afa; ¢y ) = (=)L — a) (1l + s — a; 1 + s; ze~fer), (10)

In (4), (6), and (9), ais not a negatlve mteger or zero; in (5), (7), and (10),
a is not a positive integer; and in (8), a is not an integer. Clearly each
of the equations (3)-(10) satisfies 4.4(1).

Relations analogous to 4.3(1) and to 4.3(4) (there put § = ¢ — 1) are

;—;—I;—;g(a; € %) = E )n gla +n; ¢ + n; 2), (11)

A aetglai ) = (( — deTglas e —ma),  (12)
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as may be verfied by differentiatton In (11), (12), g may be replaced

by gyor G
Since #G(e — a, ¢, —z) 15 also 3 solution of 4 4(1), then after the
manner of proving 3 11 2(22), or by confluence, we find with § as in (8},

Gla, e, 3) = #5G(c — a,¢, —2) 5 (bm +9{1 —a+3) —$(1 — )] Fifzc, 3
(13)

Also,

fla,c,2) = fgfe —8,¢, —2), @ not an mteger <3, (14)
&fa,c,3) = €glc ~a,c, —z),  anota positive mnteger, 15
Ha,22) = egle —a,e, ~2) — T T Fe, 53, 16
&la,6,) = eglc —a,6,—3) + e = Fila, ) an

where n (16), (17) a 15 not an integer and 8 has the same meaning 25 1n (8)
Both g(a, ¢, 2) and Fy{a, ¢, z) sanusfy the same contiguous relations
43(9-14)

463 Tae Case WrerE ¢ Is A Necattve INTEGER OR ZERO

¥ ¢ 15 not an mteger, o, and 1, [see 4 4(3)] are independent solutions
of 44(1) If 13 a negative integer or zero, and a does not coalesce wath
the numbers 0, —1, , ¢, then the Kummer-type relations follow from
those of the previous section as the roles of w; and w, are essentially
mterchanged Indeed, with

e=1-3 52 posstive integer or zero, (1)

gl +a— 6,2~ 2} = (g} e, 1 + 5,2} @
where a 1s not 2 negative integer or zero, and

Al +a~e2~e2)= {1 —s—a)ef(l —s—a,1 —s,ze),

provided (2 + 5) 18 ot a positive integer @

Let us now suppose that £ = 1 — £ 1s a negative integer and that

@ = —m,m a posmve mteger or zero with m <5 Then using the
notatton of 4 4(10), we have

fla 6,2y = eflc —a,¢, ~2)

(s —m — 1tmlst ©
i

+4 P Fill +a—e,2-6,32) “@
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4.7. Asymptotic Expansions for Large z

The representation 4.2(7) satisfies the conditions of 1.4(2) and so
upon expanding (1 4 £)°-%* by the binomial series and termwise
integrating, we find that

Pla; c; 5) ~ 279 ,Fyfa, 1 + a —¢; — =1,

{z |~ 00, jarg s | < 3mf2 — ¢, «>0. (1)

The ,F, is divergent but has significance in that it is the asymptotic
representation of s%f(a; c; =). Later we shall see that every nonterminating
P > g -+ 1, is the asymptotic expansion of a well-defined function
in some sector of the complex plane. To get an estimate of the error
when the asymptotic expansion is truncated after z terms, we notice
that

(4 aper = 5 QLo MIE L5,

k=0 k

(L +a— () +07

¢c—a,l t
Salt) = ) "I(n—}«l 't—}-l)'
Thus,
n—1 _ ek
#(a; c; z) = 2o Z (a)k(l +a = C)&( ) + R,(2),

A=0

2

o (=) a—c)y (@eFhatnl c—a,l t
Rz} = I'(a) n! Jo ™)) 2Fl(n—}-l t+l)dz'
Clearly Ry(z) = O(| 5~ |), |3]|— o0, |args| <m/2—¢c >0,
and by rotation of the path of integration, we get the statement (1).
Now in the integrand of (2),

c—a,l t _ _
,1(”_*_1 —-—t+l)_1+0(n 1)

a

and so,

IRa) < | e — ek

nl

ATHR x = R(x) >0, a, = R(a). (3)

Thus if a, ¢, and = are real, the error does not exceed the first term
neglected and is of the same sign as the first term neglected.
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The asymptotic expansion for JFy(a ¢ #) follows from 4 5(4)

Fla ¢ 2 ( 2 [ e 1 a e — )
+ ,{((gfza Fh—a t—a 2
o1 >0 e ~1 of JE)<O izl lagsl<s (@
Flac z)NF((;crz- . 2 R{z)-m o)
Fila ¢ 2)~ T — 1 )( 2 as Rig)—> —o0 6)

Ve can also wnte

,F(acz)N—E—))e’z"'F.,(c-a\-u 1)

I}
-2
sl -kl QN2 <agr<@—n2 (1)

If fargz | < 72 the apparent discrepancy 1n {7) 15 2 case of Stokes
phenomena See Erdely: (1956) Headmg (1962) Jeffreys (1962) and
Watson (1945}

From 4 6 2(9) and (1) we have

£la ¢ 3y~ (<YFT(a — )z *gFofa a ~s —571) ®

4

#o o0 Fila L +a—c ~zt)

where | ]~ 0 |argz | < 37/2 a and 5 are as 1n 4 6 2(9) Similarly
4 6 2(10) and (1) yreld
= (1 —a)e?

gl e )T T O R b —a 1 —a 5 ©

where 12— ¢ — 41 |arg{ze™")| <372 4 and s are as
4 62(10) The combinatron 4 6 2(6} (7) and (8) gives

Gla ¢ 5~ SHLE: e FORLC:

LE Pl +5 al—ax)
{ yif(a —5)
Gy

)l UL HUD )

sinma

Fofa a~s 1)

[z]—>® 5= 1 -(2+8)n/2<argz<(2—5)ﬂ/2 10
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4.8. Asymptotic Behavior for Large Parameters and Variable

From 4.4(12),
JFila; e32) =1 4+ O@c™?), a, = bounded, ¢~ 0, N
Lla; ¢; 2) = e[l 4+ O(cY)], ¢ — a, x bounded, ¢~ c0. @)

The behavior of {a; ¢; ) in these cases follows from 4.5(1, 2) and
2.11(2, 11). It is sufficient to record
#(a; €5 2) = (—¢)~*[1 + O(c™)]

(2m)ti2z1-c

@ explz — ¢+ (¢ — 3/2) In c][1 + O],

a, z bounded, c—> o0, larg | <7 — ¢, e >0, (3)
The expansion 3.5(46) affords another representation. We have

a(a + 1)
24c2

+ 3{a + 2)(a + 3)(:121)2}] + O,

Fla; e 2) = o |1 — Aatl) (uv)? + (uv)2 {12 + 16(a + 2) uv
) 2c

w=2gfc, v=(1-—uyl |z <]e] if R(c) =0
lz]<|c|sind, 0<8<m2 if R(c)<O. @)
The case when @ — o0 is quite complicated. Here we can deduce an
interesting representation from 3.5(21). There put p = 0,9 =1,
p1 = ¢, 0 = q, and replace = by az. Then in terms of the modified
Bessel function [see 4.4(6)] we have

1F1(a; 63 2) = T(e)(as)~ VL 1(2az) ) + (2/2) Iesn(2(az)' ) + -],

jaz | < 0. (5)

This is a special case of a result due to Tricomi (1954). Let

E(z) = 72 ] (221/2). (6)
Then

e—h: " = me
T‘(Z‘)‘l‘pl(a; 6 %) = z Cz I;m+c—1(“’3)r |5] < oo, (7)

m=0
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A () = o0 e 5 BB et

c—5
XaFy (m e ] z),
1#l <lwlr, r=mm(hk][1—=A"], ®
(U4 kel L+ (h— e = ¥ Cozm,  {zl<r, ©)
me0
where C,, depends only on the parameters a, ¢, %, and @ By drrect
computation
Co=1, C=w+ta—ch, 20 =CF+ch—2ah+a (i0)
and we have the recurrence formula
(4 B Copy = € — m(2h — ] Cny
- o2 — 1) —~ k(e — 1) ¢ — 1}] Gy
+ wh(h — 1 Coy (0]
Hese wand / are frec parametess This freedom permats the development
of expansions useful for the evaluaton of the confluent function for
large values of the parameters a and ¢ The following cases are of interest
CASEl h=12,w=Fk=1c2—a

;(:/; A ()7 = :&B'u(’/z)'fmq(kz). 12)

Bo=1 B,=0, By=d2 Bi=-2p3, Bi=de+2,
A(5¢ +- 6] 4+ 2)e + 4 2%
B,:———(—“—;t—). 3.:,’_(‘_%_*?' .

(7 + 1) Buyy = (m + ¢ — 1) By — 26Br_y (13)
CASE Il w= —a
A = B aert-an, a9

=1, A=k, Ay= K+ D)2 +a(t —H)
©n 4+ 1) Ay = 1 — 20) — ch} 4,
+ et —28) = bk ~ D ¢ ~ D) Ay
— M=) Ao g {5y
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Note that (13) and (15) reduce to three-term recursion formulas if
h=0or 1.If h = 0, (14) and (5) are the same.

We first establish (7)-(11) formally and then prove convergence under
the conditions stated. If we expand both sides of (7) in powers of z,
it is easy to see that the coefficients Cy, C, , and C, are as noted in (10).
Multiply both sides of (7) by 2b~1¢"-9) and integrate with respect to =
from 0 to co. Then using 3.6(13) and 4.4(12), we arrive at (§) when we
replace s by (hz + w)/z. The conditions for validity of the transforms
and for expansion of the ,F, on the left of (8) in powers of its argument
are

R(b) >0, lhs +w]| > 2|, R(z[w) > 0.

Next we notice from (7) that the coeflicients C,, are independent of b.
Put b = ¢ in (8). Then with z replaced by wz, we get (9).

To see that the series on the right of (7) converges for all 2, we observe
that the radius of convergence of the two series

0 [++]
Y au3"E,, ()  and Y apa™m!
m=0

m=0
is the same. For since

!

1 1 -
B@) = ol + 007Dk e

= m'—[1 + O(m™)],

we have

a,, [V

l amEu+‘m(z)l1/m = ”l]

m e(l—cx)(lnm)/m[l + O(”Fl)]l/m,

and so,

Im | @B,y (@)™ = Tim | a,fm! {1/m,
m-w m-es

Now the series in (9) has nonzero radius of convergence, and so the
radius of convergence of a series whose general term is C,2™/m! is
wfinite and so (7) converges for all z.

For the convergence of the series on the right of (8), we can prove
as above that the two series

o o
Y a,z™ Fy(a;ec+m;x)  and Y a,mm

m=0 m=0

have the same radius of convergence. Thus the series on the right of (8)
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converges for | 2] < wlr Now m the denvation of (8) from (7) we
can write

e o
Al R ARG

wo

101+ 2 (2 [ noe

R() 0w 2 T CotrEn o )
L
Let o and ¢ be real and positive Then

1
1 By 0 <

By Cauchy s tmequal ty see hnopp (1949 p 408) 1t follows from (9)
that
| Cn | S B pm 0O<p<r

where M 15 a number which | f{z)} never exceeds along the path |z} — p
Hence

|R() <75 texp] (RN Y r((:'i";”)

120 2 expf~tR{w 2)(tipl Y i e
Tle+n) R

| Rty < 1L cxpw;(: +tR()w eyt

and so

MIRE) 4 0)p%°
“ R < T FAGR@Ry  TF =

which approaches zero as n — o if pR(w/2) > 2 1e if R(zjw) < 1/2
Thus (8) 1s vahd m the left part of the circle | # w | — r However mside
ths arcle as both sides of (8) are analync functions of z and of the

ths last cond, as well as the unposedon b ¢
andw may be warved on appeal to the prinaiple of analync contmuation
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This completes the proof of (8). Finally, to get (11) multiply both sides
of the derivative of (9) with respect to s by [1 + hz][1 + (h — 1)2] and
equate like powers of z.

Some convergent expansions of the ,F, in series of Bessel functions
are given in 9.4.3. If @ = —n, and 7 is a large positive integer, ¢ is
fixed and | 2 | < n, an asymptotic expansion for the ;F; may be deduced
from 7.4.6(2, 3) with p = 0.

For our work on rational approximations for the incomplete gamma
function I'(», &), we need some uniform representations of the confluent
functions where (¢/2 — a) and z are large. These are given in 14.9.
For other developments when « is large, and when the parameters and
variable are large, see Buchholz (1953), Erdélyi et al. (1953), and Slater
(1960).

Finally, we formally deduce a uniform asymptotic representation for
the ,Jy when ¢ is large and (¢/2 — &) is bounded. With

y = e Fa; ¢; 5) ~ Z ()", dfz) =1, u=134c—1), (16)

n=0
D 4+ (k—ad)y =0, k=c2—a, (17)

and the d,’s can be generated by

dyalm) = —dsdi(=) + 4 [ (14 — B ar. (18)
0
For example,
5 kz w S RS 2R 1)
W=f—75> W=sp-zm+t— +57 z
(19)
ae) = kS AR —3)  RARR —13)  SGBR—1) ks
) =557 T 104 T T s 192 16 8-
If we write
d(s) =}, afra, (20)
r=1
then
. T o kAT
A = —zan — —= - aty, (21)
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and 1n particular,

) o l U
R “uaT T ’(n LA
. ﬂ [ 2_“_;__j_‘)k’ ~1) = —_ZZ"‘

The expressions (16)-(18) can also be deduced from some results of
Olver (1954, 1956) who shows that when the second espansion in (16}
15 truncated after n terms, the remawnder 15 O(w™) unformly m = for
[ R(z) < &b fixed but arbitrary

49 Other Notations and Related Functions

In the btcrature, a notation witroduced by Whittaker 15 aften used to
designate solutions of the confl differential equation
These functions are called Whittsher functions The connection between
these functions and the ,F; and ¢ functions are outhned below

U, Wfz) = e Fifa ¢, z) [}

- o
Nenls) =W ue) = ,—“——,,) Vanls) + ypr T s k) e q.(s)( X
Here and throughout this discussion
k=c2—a m=(—-12 [&)]
Bynls) = e3¢ %{a ¢, 2). “
Yy nf(ze*?) = expler(m + P Vg ufze %) &)
y e T explem{d -+ m)] .
Bralstt) = o - e TRy oy e
explrr{} — m)} -
T Em = BT =27 My (2 4)] O]
My ufzett%) = explLenfd -+ m)) M ufz) o

kil expldert + m))
ey TH—m s AT 2 e

exp{Lem(l — m)]
TG AT gy )] @

B g alzet) =

Difference-differential properties follow from 43 We omut detals
A complete description 1s given by Slater (1960)
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The confluent functions have many important special cases. The
tabulation below gives a list of such transcendents and references to

further information.

Function

See

Bessel functions: [,(z), Y,(z), C.(z), 1,(=),
Ki(=), HO(=), HO(z)

Incomplete gamma functions and the special cases,
the exponential integral, cosine- and sine-integrals,
error functions, and Fresnel integrals

Laguerre polynomuals

Hermite polynomuals

Coulomb wave functions

Parabolic ¢y Iinder functions

627

6 2 11, Chapter XIV

8.1.(33)
8.1(34)
6 2.6(2~4)
6 2.6(5)




Chapter V. THE GENERALIZED HYPERGEOMETRIC
FUNCTION AND THE G-FUNCTION

5.1, The ,F, Differential Equation

In 32, we defined the generalized hypergeometnc senes

ey o ()t
= . )
L) = Leam o
and in Sections 32 36 we discussed many of sts properties In this
chapter we study other aspects of (1) and take up a generalization which
1s called the G-function
Constder the differential equation

(58 ~pe— ) ~3E+ o Uy =0, $=2D, D=ddz, (2

where the notation 15 compact as 1n 3 2(2) That 15, (5 + o) stands for
M G+ a,), etc For connections between the 8 and D operators and
other related data, see 29

The order of {2) 15 max(p, g + 1) I p < ¢ + 1, the singular pounts
of Q) are at 3 = Oand z = o0, z = 0 1s a regular singulanty, z = @
an weregular smgulanty I p =g+ L,z =0,5 =1, and = = @ are
regular singulanties To get a set of fundamental solutions near z =0,
we assume (2) has a solution of the form

U= 3 oumn 0]
=
Put thes 1o (2) and get
Todim A R)m + k4 po— D)zt —(m+ &+ o)s) =0 (4
i

The coefficsent of 14 set to zero ss known as the mdicral equatron Let
my,h=0,1, ,g denote its roots, which we suppose distinct Thus,
=0, m=1-p, h=12 ,¢ &)

136
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If in (4), m = m, and we equate like powers of z, we find

— (my, 4 ap)io 6
= T + Dilmn - P ©)

If p < q + 1, no p, is a negative integer or zero and no two of the p,’s
differ by an integer or zero, then the (¢ + I) fundamental or linearly
independent solutions of (2) near & = 0 are proportional to

)

14o,—p
U, = z3-#F, Q ? l.:r),
! e _P1:1+92~P11""1+P0"P1

Uo = ,,F q (C;:
@)

I +a,—pe

= gl-pe F lz, etc.
e "°(1+p1—p2,2-p2,1+p3— 2 yeey b pg — po )

If we agree to modify (2) so that there are (g -+ 1) py’s, pg s p1seees Py »

with the understanding that py = 1, then with p < ¢ 4 1, the (¢ + 1)
fundamental solutions near s = 0 of

{6+ pey — 1) =36 + )} Ulz) =0 (8)

are proportional to

Un(z) = -0 F, (1 + & — pa

1+PQ_PIT

z) h=0,1,.,q (9)

provided that no two of the p,’s differ by an integer or zero. Here and
elsewhere, the asterisk sign (*) indicates that the term 1 + p; — pp is
omitted when j = /.

If we divide (8) by =~ and integrate, then

ORRAME! (19

satisfies

|6+ n =1 == 3 firee Py 1, [ RO 1 = (o~ 1,

e =D =TTl — 1), ete, g =@+ + ) (5+a) gy =1,

Awl

=1 fi=(a = Dey — 1) - (o — 1), (11)
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If a numerator patamneter 15 umity, say o, = I, then F(z) satsfies 2
nonhomogeneous differential equation of arder max(p — 1,¢) Thus,

Bto—D—s8+a) +eag)lFa)= (o~ 1)
Flz) = JF, (""*;." |3 a2
We also have

B8 +pe— 1) — 28 + )] A) = plp +pe — D24,

Lp+e
+Lu+p 2)’ (13

(G + )8 + o+ oo — 1) ~ 303 + p + a, )1 B(z) = plus + £, — 1),
B(z) = x+A(z) %

A= paFo{,

Ifp > ¢ + 1 and no two of the a’s differ by 2n integer ot zera, there
are p fundamental solutions of (8) near z = oo proportional to

k=12 ,p (]

1 — et
T = aF (2 TR,
Here agan, at feast one of the p, terms 15 umty ‘To prove this, observe
that 1f 1 (8), 2 13 replaced by 1/z, 8 must then be replaced by —5 whence

B+ o)== ()28 + 1 —pl Uljz) =0,  (16)

and (15) follows by an obvious change of notatton  We may also deduce
(15) by the usual power senes approach

1In the singular cases just mentioned, e g, when two or more of the
pa's differ by an integer or zero, mdependent solutions proportional to
the respective Uy's do not exast In this event, we will construct solutions.
v1a limsting processes

First, we observe that Uy(s) 1s not defined if far some 5,7 # &,
(1 + p; — pa) s a nmegative integer or zero However, the function

Oyfe) = #1-m (} i :: - ;’.: f 3)

9P 1 Par 2} = (] "sF s e s 3) an

satisfies (8) and 15 defined for all values of the denominator parameters
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In particular, if p; = —n, n a positive integer or zero, and no other p,
is a negative integer or zero, then

(p)nss™

»Po(%p 5 Pas z) = mnFa(“p +n+ LB +n+ 1 z),

ﬁl =1, BJ =P for j= 2,3, 0 (18)

which is U,(z) except for a constant factor. Thus no new solution obtains.
Now consider the G-function defined by

. 1 —o,, 1 —a
Gritn (z exp[—in(m +n + 1 — p)] l 1 —pp ey 1 — P:)

. 1 - - m
= Gmiln (z exp[—im(m + n 4 1 — p)] | 1 — ‘::) = hX:lo AU (=)

2 (= exp[—in(m + 1+ 1 — p))O= [T on — p)* [Ty T+ @ — ps)

R0 H?=m+1 F(I +p — Ph) Hf=n+1 F(Ph - af)
2 1 -+ ®y — Pr
XDFO(I + pq — o z)’

O<m<yq 0<Ln<p; p<qg+1 or p=g+1 and |2|<1, (19)

where U,(z) is given by (9) and the definition of 4™ is obvious. Note
that if in (19), the G-function is defined without any reference to the
functions U,(z), then p, need not be unity.

A more detailed analysis of the G-function will be given later, see 5.2.
However, a special case has already been encountered. For if m = n =
g = 1 and p = 2, then [see 3.10(1)],

I'(1 + a; — ay) 2 1 —ay,1—a,
V() = = 2.1 e T .
&) F(I+a1—bo)F(l+a1—bl)G2-2(e \I—bo,l—bl) (20)

Indeed, our discussion concerning independent solutions of (8) when
two p’s differ by an integer or zero is akin to that given for the ,F, .
For each m = 0, 1,..., g, (19) gives linearly independent solutions of (8)
provided that none of the p,’s differ by an integer or zero, and that
(14+0,—p,),j=12,..,mn is not a negative integer or zero. The
latter requirement is not restrictive insofar as solutions of (8) are
concerned, since solutions arc only known to within an arbitrary constant.
Further, » is arbitrary, so that we could arrange the parameters to have
I'(p, ~ a;) appear in the denominator of the right-hand side of (19) if

+ oy — p;) is a negative integer or zero. In this connection, we should

note that the G-function is symmetric in the parameters: o ,..., a,, ;
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Carts +% s Par 3Pms 53 Py, 1P Thusashufllng of the param
eters on the nghthmd slde of (19) may necessitate a change m the
arrangement of the parsmeters of the G funchion on the left But as
previously remarked, thus does not affect our approach to wnting
solutions which sausfy (8)

Im 21, AL (2)and AFUy(2) + AP Uz) withp, — py =35+ ¢,
5 a positive wnteger ar zero, are hnearly wndependent solutions of (8)
1f € = 0, we invoke L'Hosprtal's theorem to get a solution independent
of Uy(z) by evaluating

T ,(2) = bm (AU (2) + AU} @n

Ve prove that

W) = Tp eewl—rmlm v n + 1= 5] iy}

L1+
B

(e emletn fn 2 Lopl re Tpe - ,,, rL‘.. 0 105 p)
T T+ oy — 0 T, TR ~

x Yy~ b eplortm L w1 pl) — T dlrome) — L KUp )
A o

I+ )f Yoy~ )~ WL+ 9] F (] T 5 4)
=3 Po

1+,
T o, —p Iy-u,~y.

s -

Sl i i b T @
where
e 1 H-f,gf,)

I woom
-1 11 1/:1 Pdm—r .1¢v.-7,)
l+to—7n ,lvo,—m

n‘.m,—v.)n,..ra +n—9)
AT+ 1 =) 1L, T, — )

= 3m

T+ 7y — o )5 — 1 — B Jrwrest mgk
L R A E TtV
_#zexpleln a1 At e 2L, Tiry - o) [Dan ins{oy, 7
=1l T — o Iy snr(n, — )
<o (WL AT s @

|
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and

ors (7 ) = 5 Gt + 1) — ) — 90+ B+ IO @9

£=0 7)1k

In the latter, y{y,) is short for T4, #i(y;), etc.

Note that in the 3F2*! symbol in (22), I 4 p, — pp stands for I, 1 -5,
1+ po— po s 1 + pg~—po, and 14 p, — pg is the same with 1
omitted. Again in (23), 1 + 7, — 7o stands for 1 — s, 1, 11 +. Tg = To geees
| 4 7, — 72 . To get the polynomial expansion for T3,;7 in (22) from
that of THF in (23), in the latter replace m by m + 1, ¢ by ¢+ 1,
op by 1 —oay,7 by 1 —py,7a by 1 —py, and 7443 by 1 — p, for
h = 2, 3,...,, q. Then replace z by x exp[— #=(m + n + 1 — p)].

For the proof of (22) we write A{™U\(s) in the form C 4 D where
C = Y5t and D = Y% . Then lim., C is given by (23) and

[(—)"(z exp[—fa(m +n + 1 — p))u-2rt1(1 + €) ]
D = X [Tea Ipy — p; — ) e T + o5 —py +5)
- GF(I + S) I—.[g=m+1 r(l + p) - pl + S) H;’='ll+l F(Pl - O”J - S)
Ll +en—p s 2. @5
X pialless (1 — &1 4814+ ps—p+ 80l +pq——p1+sl ) 25
Also,
AU (=)
[(-—)’+‘(z exp[—ta(m + 1 + 1 — p)yt-2tstol(] — I(1 + €) ]
XMme Mo —py =5 =Tl (L + o5 —pg + 5+ )

=5F(1 +$+€)H’]J=m+lr(1 +p—n +5+€)H§’=n+lr<ﬁx"‘“5‘5—€)

l+oa,—p+5+¢ 2
X"F"(l+s+e,l+p2—pl+s+e,...,l—i—pa—pl-i—s—}—e ~)'

(26)
Now evaluate lim _4{D + A Uy(2)} and (22) readily follows.

If another pair of the p;'s differ by a positive integer or zero, say
ps — py =1, but p, and p; do not differ by an integer or zero, then
a solution independent of Uy(s) follows on application of the above
analysis to A" Uy(z) + 4§ Uy(z). If three or more of the p,’s differ
by an integer or zero, the previous analysis can be readily extended to
get lincarly independent solutions. Later, we define the G-function by
a Mellin-Barnes integral and after the manner of deriving 3.10(13) as
in 3.10(14, 15), we can deduce (22). This same type of analysis may be
used to get a representation when three or more of the p;’s differ by an
integer or zero. Equation (22) has been previously given by Luke (1962a),



142V GENERALIZED HYPERGEOMETRIC FUNCTION AND G FUNCTION

There on p 15, 1 (2), for —4(1 + B, + A} + ¢{1 + f) read the same
vath g, replaced by 3, See also MacRobert (1961, 1967b) for an analysis
when two or more of the p,’s differ by an mteger ot zero

We now consider (15} If @ — a; = 5, ¢ a posstive IRteges oF zero,
and no other o, differs from o, by an integer or zero, then Vy(z) 1s
defined and V,(z) 15 not defined unless s == 0, n which case Vy(z) = Vy(s)
If 5 > 0, a well defined solution may be wniten using the @, symbol
[see the remarks around (17)] However, this leads to a solution propor-
tional to Vy(z) For our later work, 1t 1s convenient to write

.
A o A Y B S

TR Pl TIy Tay — o) (27} =
Tl Tps — @)
T ap —pg | (=)0
* ey 0 20
g+1<p or g+1=p and |z|>1, N
where V,(2) 1s gven by (15) mm which event we take p, =1 The
definition of B! 1s obuious If we omut reference ta the functions Vyfz),
then (27) 1s valid without p, = 1, see 5 2(11) with an appropreate change
of potation If p, = 1, the above relation 1s notated L, (ze~)
fsee 511 1(7))
To dertve a solution mdependent of ¥y(z), we set g — oy = s + ¢
and evaluate
X(2) = hm BV (2) + BV (2)) (28)

After the manner of deriving (22), we find that

X(z) = 51 ((ze maf! H—%»%)

wip 1+ py
4 (e )l () Hl-z I' oy = o)
ST ey —

3 |l - tatee ) 1 de) — 3 o ) 4+ 5 = oad =1 +9)]
A &

Dby — g f ()7 2

SN A
1 Tt —p [1+a—p | ()22
+qtlF:’(l+“27“‘pH1+az“ﬂ',T)‘

s )
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where the T2 and *F} symbols are given by (23) and (24), respectively.
For convenience the polynomial portion of (26) may be expressed in
the form

imea | 1 ey —a
Toi ((~e "7 I+ Pan”“ oy )
= (ze~i")~ 5(2 (s =1 =~ T(ey +- A TTs Ty — oy — k)
-V & MY, g — oy — B) 2

etmugt=al oy — 1) [T I(1 4 o5 — o) 7 ( L1+ o, —o
- (s = DT, (A +p; — ) T2 — g, 14 pg —

)
(30)

Clearly (29) may be deduced from (22) with a change of notation.

As previously remarked, the point 5 = 1 is a regular singularity of (2)
when p = g 4+ 1. For fundamental solutions near this singularity, we
refer the reader to the excellent work of Nérlund (1955).

5.2. The G-Function

In 3.6(28) and 4.2(4) we gave an integral representation of the Mellin-
Barnes type for the o/, and ,J7; functions, respectively. With these as
patterns, we could write down and prove a similar representation for
the I, . It is morc convenicnt, however, to deal with a function which
includes the ,F, as a special case. Such a transcendent is the G-function
which we now define as

it

G'm.n ~ @y yeeny Gy
g

by b,

Gren s
nq

)

q

. Dby — ) TT0 (1 ~— a, +5)
= (27i)-1 Sm1 ) Je1 2 2* ds.
( 4 ) JAL n;’.,,,ﬂ P(I - bi -+ 5) H;L"H F(“J i S) *
(1)
Where no confusion can result, we often refer to the latter as GI(z).

Here an empty product is interpreted as unity, 0 < m < ¢, 0 < n < p,
and the parameters @, and b, are such that no pole of I'(h; — s),
j = 1,2,..., m, coincides with any pole of 'l —a+s)k=12,..,n
Thus (@, — b)) is not a positive integer. We retain these assumptions
throughout. Also = #
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There are three different paths L of integratton

L goes from —100 to -0 so that all poles of Il — s),
s=12, ,m ke to the night of the path and all poles of

T(1 —a,+s), k=12, ,n he tothe left of the path For the
integral 1w converge we meed = m 4+ —¥p+¢) >0,
larg | <Sv If fargz| = Sm, 320, the integral convesges  (2)
absolutely when p == ¢ if R} < —1, and when p 3 g, if with

$ =0 417, 0 and 7 real, o 15 chosen so that for r — tco,

(g—ple >R} +1—Ug—ph
where v 15 given by (6} below

L1 2 Joop beginning and ending 3t +-c0 and enctrcling al poles of
I(s,—s) ;=1,2 ,m, once tn the negatwve direction, but none

of the poles of I{l —ay+), k=12, .7 The mtegral
converges 1if g 3> 1 and erther p <Cgorpg=gand [z] <1

L 153 Toop begmnng and ending 2t —oo and encircling all poles of

I(l ~ag+s} k=12 ,n, oncen the posiive directron, but o)

none of the poles of I'(8; —35) y=1,2, ,m The mtegral
converges 1f p 3> 1 and esther p >gorp=gand [z} > ]

For later considerations, it 13 snformative to venfy the statements
gven in (2) Let

[ 7 ~ )i 7 — 3 + )5

B = [ T b, + 9 TIE,, 1o~ 9 @

and let s = o + tr, o and  teal, on the path of wtegration Employing
2 11{12), we find

VB(s)] < Cexpl—{8u) 7 | + rarg 2)]] | 7 P[i + 2(r) O(-Y)],

€= Qapexp [g { }; L+ ’): i 1<a,)xﬂ,

0RO} +(o+ P —9) vséb,—ia,.
S—mn—ip+g ®

where 7(r) 13 bounded for all 7 1f 8 > O and |arg z | < 8, B(s) 1s of
exponential decay for large = on the path of integration and so the
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integral converges. If |argz | = 87,8 > 0, the integral will converge
absolutely provided that for = sufficiently large, 6 < —1 and this leads
to the statement (2).

It is supposed that the parameters a;, , by, , and the variable z are such
that at least one of the definitions (2)-(4) makes sense. Where more than
one of the definitions has meaning, they lead to the same result so that
no confusion arises.

If we use (3), the integral can be evaluated as a sum of residues. If no
two of the b, terms, & = 1, 2,..., m, differ by an integer or zero, all
poles are simple, and

Gnp (o] ) = § MLl = b i T by — a;) o
n.q b, Pl B L I'(l + b, — &) H;;ﬂﬂ I'(a; — by)
14+b,—a o
X pFa—l (1 + b: - b§ (_)p ™ "Z),
p<q or p=gq and jz|<]l. )

If m = 0, and we use (3), the integrand is analytic on and within the
contour and so

5) = O ®

It is clear that the G-function is a many valued function of = with a
branch point at the origin. For further discussion of the singularities
of the G-function, see the remarks surrounding 5.3(1) and 5.8(1).

If in (7), we replace m by m +- 1, ¢by ¢ + 1, and a5, by 1 — &, , &), by
1 — pp and = by zexp{—in(m + n + 1 — p)}, we get 5.1(19). Again
replace p by ¢+ 1 and @, by pp3, % = l,..., ¢+ 1, with p, = 1,
replace ¢ by p and b, by o,k = 1,2,..., p, take m = p, n = |, and
replace 5 by (ze~i")~1. We then get 5.1(27).

If only two of the b,’s differ by an integer or zero, then as in our
previous studies, we can use L'Hospital’s theorem on the pertinent
portion of the right-hand side of (7) to get a series representation for
the G-function on the left. The final result can be deduced from 5.1(22)
by making appropriate substitutions for the parameters and variable

prcyiously noted. Suppose that b, — b; = s, s a positive integer or zero.
Write (7) in the form

P

Gpn (::

a m
9-fom mea .

h=1
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where the meaming of C§™ 1s evident Then

2 m Wi, ]l L+ B — by
B Lol o)

Gpols

¢

) I TG, — 8 L Tt 4 5, — o))
ALy 7O+ 8 — ) 112, 100 = B)

x[jo+ma-Fue-n+ Zut+n-a
Z

- Ern-na § - 0 —dtr + 9]

+b—a,

xoFer (T2 T 02 - "z)

+J:“(l+b,~a,ul+b ——a,

N PR g L i "‘)]‘
b= byt (10)

where the 77°0 and JFY_, notations are defined by 5 1{23} and 5 1(24),
respectively  Equation (10) can also be deduced from the contour
mtegral (1) See the remarks followmg 5 1{26)

If no two of the ay terms, k =1, , n, differ by an integer or zero,
then use of (4) leads to

Gral=

ﬂ,,) P IT Han ~ a)* T T, —an + 12 ¢
by 3 I T+ 2 — a1, T = 3)

1+ & —ap | (=) ™
sy Tl )
g<p of g=p and |z|>1 1

Ttss clear from (7) and (11) that the ,F, can be expressed as a G-function
‘We have the following relations

Iy l ) - TH I + b —a)a™
e 0+ b — BT Tle, — )

145 —
ooy T T,

p<<g or p=g and |z|<1, (12)
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T13- (1 + p; — po) TTienss Tpo — 1) ]

by L X {& expl—in{n + 1 — p)J}ee?

”r(l-i-Pq—Po )— 12 T+ — po)
Gin,, (s expl-in(n+1-p)] [ - )
X Opln (7P 1-pos 1=pyseees 1-pg
p<q or p=g+1 and |z|<L (13)
Xp | F(Pa) . 1 — xy
oFa (Pa ﬂ) - I(oy) ~Prott ( 0,1~ Pq)

p<g or p=g+1 and |z|<l (14)

We remind the reader that in (13), p, need not be unity.

G”‘ 1 ( a, ) e I(b; — ay + 1) 30!
np F(l + a; — al) Hjs"l+l F(al )
4 by — ay | (=)ot
X"F”‘l(l-!-a,,—a;" =z )’
g<p or g=p and |z|>1 (15)
[I—Ig-l I'(1 + p; — po) T Timnsa Tpo — o) ]
R s = X {5 exp[—in(n + 1 — p)])teo~1
N+pe—po |7 T+ o — py)
x GrlL (“‘1 explin(n + 1 — p)] | 7* p;;--., Pq).
p<Lg or p=g+1 and |zj<l. (16)
2 (%] ) - Tea) opa | lipa
e (P: *’) T T(,) G (—" ap )’
p<qg or p=g+1 and |z| <]l (17)

The combination (7) and (12) yields the expansion formula

[I'I}’lx {I'(b; — bp)* T(1 + by — b))%} ]
G n( ‘(1,,) - X exp[—imby(p 41 — m — n)]
P ULE T T (0@, — b)) T(1 F b, = ay)}

X GL» (( —)pHi-meny

b - b*) (18)

ko Vg
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Sunilarly, from (11) and (15)

[YL-: {T{ar — a}* T(L 4 o) — ap)* ]

e lsP) = 5 X expl—tr(a, — g + 1 —m — n)]
TN S o — B I+ b~ m)]

x G;:((,)mﬂ. ,zzm; a:) )

For generalizations of (18), (19) and ather series, sce 59 3

Ongmally the G-funchion was defined by Meyer (1936) by the
series (7) Later, see Meyer (1941a, p 83, 1946), the senes defimtion
was replaced by one 1n terms of the Mellin-Barnes integral (1) where
the path L 1s as defined n (2) and (3), respectively The complete
definition (1)~{4), except for the discussion mvolving | arg z | = 3,
8§20,m (l) ® due o Erdély: etal (1953, Vol 1, p 207)

The by MacRobert (1937, 1938) can be
defined by

as1 ’

Efay, 6y, 10, b,.0y, by, %) = E(s,,b,,2) = G2} 1‘;‘:') e}

Both MacRabert’s E-function and Menyer’s G-function arose from an
attempt to give meanmg to the F, symbol when p > ¢ + 1

53. Analytic Continuation of Gp3(z)
Tt 15 readily shown from 5 2(1) that

cprl=

£

a, -8, 1
b:) = c:;;-(rll1 - ,,:) arg () = ~argx [0
This 15 an important relatton, for 1o the discussion of the G-function
we can without loss of generality suppose that p < ¢ If p = g 52(1)
and L 15 defined as m 5 2(3), then we require 0 < | z| < I, whereas of
L s giwen by S2(8), 2| > 1 When L 15 the path m 5 2(2), we have
a representation vald for all z, z £ 0, provided m 4+ n > p+ 1 and
[argzt < (m+n—pyr VWhen lz| < I, we can, without altering
the value of G} )(z), bend the contour 1n (2} around so that 1t comcides
with the contour 1n (3) From 5 8(1), G} 3(2) satisfies almear chiferential
equattan of arder p and every fimte posnt n the z-plane 15 an ordinary
pownt save z = 0 and z = (—)"*2 which are regular singulanties
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To define the GZ:(z) function outside the unit circle, we introduce
a cross cut in the z-plane along the straight line from

(—)mn-r to (—)mnor(l 4 coet), —mf2 L p L 7f2. )

In (2), we most always take p = 0. Then in the cut plane G35(2) has
no singularity except for the branch pointaty = 0.Ifm+n > p + 2,
the sector | arg = | < (m -+ n — p)r contains the point (—)™+"~P. But
in this situation, as noted above, Gj5(s) is regular at 5 = (—)"+"~P,
Thus, if m+n > p-+2 and |argz| < (m 4 n — p)w, the cross cut
is superfluous. We have, therefore, proved that if m + 2 > p + 1 and
largz { < (m -4 n — p)m, then Gp3(=) can be continued analytically
from inside the unit disc with center at the origin to the outside of this
disc by means of the expansion 5.2(11) with ¢ = p. It readily follows that

apa| ) _ Tp) %o T2 Tlay — a)(ee)n
safs by ?) = T(a.) 2 L) T
g 1 + ap — bD » @y ~1
Xn‘f'lrp(l_*_ah__a;*l <~ ),
0 < arg z < 2m, 3)

and this furnishes the analytic continuation of the ,,,F, on the left
from inside the unit circle to the outside of this circle. We have therefore
completely generalized the ,F, results of Chapter III with respect to
solutions of 5.1(2) about the singular points & = 0 and 2 = o0, and the
connection between these solutions. In the ,.,F, situation for p > 1,
the solutions about the singular point 5 = 1 are not of hypergeometric
type and so are rather complicated. We shall not deal with this aspect
of the problem. Instead, we refer the reader to the excellent memoir
by Nérlund (1955).

For further discussion on the analytic continuation of the function
Gyp(z), see 5.7(10, 11) and 5.10(21-23).

5.4. Elementary Properties of the G-Function

As previously remarked, the G-function is an analytic function of =
with a branch point at the origin. It is symmetric in the parameters
Ay ey On 5 Quiy seeny @y 3 by 4oy by, 3 and by, 45 4.0, b, . Thus, if one of the
ays,h =1,2,...,n is equal to one of the bis,j =m + 1,..., q, the
G-function reduces to one of lower order. For example,

Ao yaeny ay

Sl PN R =N O e NPT

-1 0y
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Simalarly, of one of the ay’s, A = n -+ 1, , p, 18 equal to one of the /s,
=1,2, ,m, then the G-function reduces to onc of lower order
For example,

Gl e onin bl ) meest @

2 L PRt by, b

‘The important relation
errfelp) =] 20 ml)e—wn o

has already been noted Its sigmficance hes n the fact that m the
discussion of the G-function we can, without loss of generahity, suppose
that p < ¢ Another important result easily proved from 5 2(1) 1s that

ot o) @

e H ORI b+ o

If in the tntegrand af § 2(1), we replace s by ks, & a posttive wnteger,
and use 2 (1), then

a2 {s)3) = e crtin |

Cixy Cann -‘n)

2t
‘k"“" dix i dns dat’

d— GNP —m-n] =3 -Yatlp—p+], (9
YA

where ¢y and o), stand resp 1y for the set of
o o+l a+k—1 _
* i e A=12 p
b bt} byt k—1 _
T g A k=12 g

The following rdentrttes are readily proved from 5 2(1)

e ay)

Gy D= renr D). P

©

r,

s leln ) = remntlsy)  eem e

ranmicgerorzero  (7)
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a,,) — Gm (z l a, — 1, ag ey a,,)
A r.a bq

(1-a,+b) G (s
+657 (s by 1, b b
)= o]

+ G;,::: (:: l ay yeeey a,,;)1 s Oy — 1)’

a
1<e<p—1, h=p. (9

myn = 1. (8)

a
G (= ) (2mi) Yexpinb,, ) Gritn (se :)
-1 9p
— exp(—tnb,, ) Gt (ze' b’a z,
m<qg— 1 (10)
maf~ ap\ _ ry— - m.n+l | pp—tw @
Gna (.. b:) = (2mi)? gexp(zmz" ) Gon ( e bq>
. Jla
—~ exp(—tra, ,) Grotl (zei b:) ,
n<Lp— L 1)
d ~— man o a7’ —_ ~—l-b m, ap
?12{ b G (= b,,)i— oyl % ’bq). (12)

Z:): =sTTheT lbl, ,,:, 1+ b)

m<gq, h=gq. (13)

D) = o G""q" (: l a — I,baz yosey ﬂm)’ n=1. (14)
(

= —g-t0 G |
| Gz

N R 1)
q

n<p, h=p (15)

The latter four expressions can be put into alternative forms by actually
performing the differentiations on the left. Thus, for example, (14) is

equivalent to
W= T ) s @ von (],

d
d"'G (z
nzl, (16)
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We also have
& q - 04
b lons (6l - oana Gy ) @

el - crame Y o

P41 etl

In most of the above relations, we must omut the branch point at = = ¢
This can be relaxed for specral values of the parameters Thus (12) 13
vahd for z = 01 m = 1 and b, 15 3 positive mieger

Note that many known relations for the .F; , Fy , and more generally
the ,F, , can be readily deduced from the formulas of thus section 1n view
of the connecting formulas m 5 2(12-17)

5.5 Multiphcation Theorems

Throughout this section = = 0 and m, 7, p, and ¢ are integers with
¢g=1, O<ngp<y O<m<yg

Then we prove that

- =1 o 0.a
A S R L N L S
valid under the five cases enumerated below

CASE! p<gin—1)<t
CASE2 p=g (—ymnrzst | jw—11<1of (=) 2R <E

[

le—11< o (—)neR(s) >

CAE3 p=g m+n—pxl, |agz|{<(m+n—p—1m
fw—1]<1

CASE 4 m = 1,p < g, by 1s 2 nonnegatyve integer That 13, under these
restrictians (13 1s vald for all = and w

CASES  m =1, p = g, b 1s 2 nonncgatrve integer,

[ T M IR TP PR Al
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REMARKS. In each case,the values of the multivalued functions G7 7' (sw)
and G534, (z) are connected in the following way. For a chosen value
of arg =, the value of arg sw is determined in a prescribed fashion so
that the values of the respective G-functions are uniquely determined

by means of the integral representation 5.2(1). Thus for Case 1,
arg 3w = arg & + arg o, fargw | < =f2. (2)

In Case 2, we make a cross cut in the z-plane along the straight line
from (—)m+n-P to (—)™""P 4 fco where € = 41 or —1 according as

I(z) < 0or >0, respectively. If I(z) = 0, we may takee = l ore = —1
in which event Gj5(sw) and Gj5(s) may depend on the choice of e.

For a chosen value of arg =, the values of G(s{2] ~{) and Gpilha

(=2} = |) are uniquely determined by 5.2(1). The values of G () and
Gt \(5) are derived from those of Gua(z/2] = |) and GpuEh (=/2] = 1),
respectively, by analytic continuation in the cut plane along the straight
line, suitably indented at (~)™*7—7 if necessary, which joins /2| = | to z.
The value of Gp'p(sw) is obtained from that of Gp;(s) by analytic
continuation in the cut plane along the straight line from z to zw.

In Case 3, the values of Gy p(zw) and GpiT (=) are connected as
follows. For a chosen value of args, jargs | < (m+4+n—p — 3,
the value of arg(sw) follows from (2) and the values of Gpy(sw) and
Gpilip(s) follows from 5.2(1). The values of Gpp(sw) {Gpiliia(s)}
are gotten from those of Gjp(sew,2| sw|) {Gpilp 1(sw/2] s |)} by
analytic continuation along the straight line which joins sw/2| zw | to
s {&/2] 5 | to =}, respectively,

For Case 5, the plane is cut as in Case 2 with m = 1. In connection
with this case, see also (8).

Note that Case 3 gives a better result than Case 2whenm +n —p > 1
and [argz| < (m+n—p— 3= for if, also, (—)"*"PR(z) > 1,
which is possible only when m 4+ 2 — p > 2, the domain defined by
| — 1| < lincludes thatdefinedby | v — 1| < | 1 — [(—)m+n-P[z]\.
§imilarly, Case S gives a better result than Case 2 when m = 1 and &,
1s a positive integer or zero, for when (—)*"PR(z) < 4, the
region defined by | — 1| < 1 is included in the region defined by
[ — 1] < [1 = [(~)**=2].

PROOF. By Taylor’s theorem

0,, _ < (.\' —_ §)’. dk -
bq) =X O (¢

L=0

G«

) @)

Replace x and ¢ by zw and =, respectively, in (3) and use 5.4(17) to get
(1) formally. To complete the proof, we need to determine the radius
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of the largest curcle 1n the a-plane with center at £ such that the G-function
on the left-hand side of (3)15 analytic everywhere on and withimn this circle
It 15 convensent to first treat Cases 1 and 4 together 1f p < g the
only singulanty of G} J'(x} 1s a branch pornt at the origin unless m = [
and b, 1s a posttive integer or zero, i which event G} J(x) 1s analyuc
at the ongin In the latter situation (3) 15 valid for all values of x and £,
and this leads to Case4 We pow exclude the Case 4 hypothesis Let
£ 3 0 be an arbitrary pont 1n the y-plane The pomt ¢ does not neces-
santly have ats printipal value Then G 2(x) 15 amalytic m the mtenor
of a airele C with center at £ and radws | £ for every ¥ 1n C provided
that argx 1s umquely d by some
Let us agece that

|arg s —arg £} < 2

Then (3) 1s vald for | x — £{ < [ £] and this proves Case 1

Next we turn to the proof of Cases 2 and 5 If p = g, then GJ' 2(x)
has a singulany at x = (—)*** and a branch pont at the ongin
unless m = | and &, 1s a nonnegative integer, 1n which event G7 J(x)
1s analytic at the ortigin Let us cut the x plane and choose arg #, etc,
a3 i the above remarks associated with Case 2 {There put 5 = x and
w = ¢) Let £ # 0, £  (—)™ # be an arbtrary point in the x plane
If there 1s a branch posnt at the origin and £ 13 not farther from the
ongn than it 1s to {(—)™#" P, thatss £ € | £ — (— )™ 7|, which
implies that (—)™*" PR(£) < 1, then (3) 1s vald for | x — £| < | £]
and we get the first part of the statement n Case 2 Suppose now that
(=)™ PR(§) 2 § Then (3) holds for Lx —£| < [(—)m*n » — £)
and we have the second part of Case 2 and Case §

For Case3, m view of the above remarks, with m+n—p =1
G7 5(%) 1s analytic in the entire sector x 5 0, Jarg x| < (m + n — phr
When m+n—p21, €50, and jagé| <(m4+n—p— bm
the intersor of a tircle wath center at £ and radus | £ § hes withan ths
sector so that G} J(x) 1s analytic 1n the intertor of this aircle and Case 3
follows Thrs completes the proof of (1)

Equation (1) was first given by Meyer (194lc) Sce also Meyer
(1952 1956, 1952, p 376), hnottnerus (1960) It 1s a gencrahzation of
well known results for Bessel functions, confluent hypergeometnc
f and hyp f

It s clear from the discussion surrounding Cases 2 and 5 of (1) that
the condstrons of validity depend on the manner m which the complex
z-plane 1s cut to msure that the G function 1s single valued It 1s of
nterest 10 take a closer look at this situation for a parucular case of (1)
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Let m =1, n=p, and replace ¢ by g+ 1. Letd; = p, 1 + b, — a; = o,
j=12.,pand 1+ b — b,y = py, I = 1, 2,.., g. Finally, replace
z by —=. Then (1) becomes

_ v (=) (=ph pA+1 o, }
zw) - go Kl P+1° a1 (P+l —‘kqu

wh Fy (:: :). 4)

The conditions of validity are:

p < gq,|w — 1] <C1unlessp isa positive integer or zero, in which
case the expansion is valid for all s and ew0; p=q + 1, 5 # 1,
o —1 | <1 RELSLlv—-1i<il -1z R=L (5
unless p is a positive integer or zero, in which event the expansion

isvalid for [vo — 1| < |1 — 1/z|.

Here, when p = ¢ + 1, the z-plane is cut along the straight line
from 1 to I + efco where e = -+1 or —1 according as I(z) < 0 or >0,
respectively. For the ,,,F,(3) function, when p = 1, our usual practice
has been to cut the plane along the real axis from 1 to 4 oo [see 3.6(1, 6)].
If we follow this procedure for the development of (4), then forp = ¢ + 1,
the conditions of validity are:

s£L je—-1{<?l if R, jw—-1]<|l—=1/z] if
IR L, w1 <|I(=)/is]if R(z) =1, unless p is a
positive integer or zero, in which event (4) is valid for s = 1, (6)
fo— 1] <<|1—1fz| if RF)IL, [ow—1]<{{=)flz if
R(z)> 1.

Let us now reconsider (1) in the general situation when p = gq.
Suppose we cut the z-plane along the real axis from (—)m+n~? to
(=)™m-P 0. Then for a chosen value of arg z, the value of G 7(zw) is
obtained from that of GI'%(s) by analytic continuation along any path
connecting s and ze which does not intersect the cross cut. Let £ be an
arbitrary point in the x-plane, £ % 0, € # (—)"t=2.If (—)"*"PR(£) < 1,
then (3) is valid for & — ¢ | < M, M = min(] £}, ] £ — (—)""P ).
If (=)m+-PR(£) > 1, then (3) is valid for | & — ¢ < [ I(§)]. With «
and ¢ replaced by sw and s, respectively, and the complex plane cut as
above, we have that (1) is valid for Cases 2~ and 5* as follows.

CBE2% p=g, s (—ymnrr, Jw—1[<1 if (=) 7RE) <L
=1 <1 = [(—ymr=r/z] |if } < (—)™"PR(3) < Lo — 1] < I()}/} 5]
f(—yrrRis) > 1. Q)



156 v GENERAUZED HYPERGEOMETRIC FUNCTION AND G FUNCTION

CASE 5% m =1, p = g by 15 3 nonnegative integer,

a1, e-t<|1 =) e arm <
to-n <l R 21 ®
This concludes our discusston of (1)
Wath m, #, p, and ¢ as 10 (1), then
e (’”i::) = i Lot opg, (z‘l ,,i:’,a”). E£0, 9

18 valid under the following three cases
CASE1 p<q Riw)>}
CASEZ p=gq (-~} Pzt LRE)> {1~ ()™ sl 2 1
e —L{<[T= (=)™ 22| of L= (=<1 (10)
CAEI p=g mtn—p21, (agz|<(m+n—p—r, RE >}
‘We omit proof
Some other useful expansions can be denved from (1) and (9) We first

consider (1) with m << g If &, = 0 for & = g, 1n view of the symmetnic
properties of the G-function [see 5 4(1)), we have

33 (“”Ib,,?, - é(w;lm G;‘J‘(‘Ib:,ﬁ) an

Muluply the latter by 2* and use 54(4) Wuth an obvious change of
notation, we get

6z ) w»,gn(’“;#ov;;(zlbq LT b'), h=g 2

From § 4(7), we see that (1} can be replaced by

Gpp (zw

%) = 5 U= G ([0
- £ g, (] @

2+ a1

and if &, = 0, we get

S HCI

)

= 1g'(l ;vw)k G;’:(z I.évb.:,n ’}1) a4
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The latter is also valid for m = 0 since both sides vanish. Multiply
both sides of (14) by z#, use 5.4(4), change notation, and so find

(;)"“’b‘zuG (s kaI:IZh, ,b)' (15)

a

m,n !~
Gp.q (..w

Similarly, from (9), if # > I, we have

A hd —_— A —k, a5,y
Gm " ”wl 1 as . ) Z (1 1/'50) G;‘“;‘ (z I 1 Z._ ap)’ (16)
a

G'" " (~w ) = ol Z (1 — l/w) G"' " (~ l ay —k, a‘_,,...,a,).

bq
(17

b

Finally, if # < p, (9) can be replaced by

Gnn (::w (Il) ) = g} Z M Gmo (z ,

Ay youry Apy 5 Ag ~— k)
q L=0

e

h=p. (18)
For generalizations of the expansions of this section, see 9.2(3, 5).

5.6. Integrals Involving G-Functions

S.6.1. fo YIGR (yle) dy

T'rom the definition of the G-function, 5.2(1), and the Mellin inversion
formula [see Titchmarch (1948)] we have

)dy = 2L I, A9 Th I — gy =) (1)
I IA =5, —5) H;;,,_,,l I'(a; +5)°

valid under the seven cases enumerated below. We put

f J“G'""(ny b

S=m-+n—1Yp-+9g), E=m3n—p, (2)

We have need for the following conditions:
—lg}xigm Ry < R(s) <1 — max R(ay), 3)
<min Ry <R <1~ mix Ra), 3%

R zah-ibh{+i(q+z—p)><q—p)fe(s). @

Rl hnl
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It 1s understood that 1if 1 = 0, that part of (3} involving 1 — max R(a,)
1s treated as empty Thus (3) becomes mm R{b) < R(s), 1 <k <Km
Symilar b are

The gven conditions wm the cases for the validity of (1) 1 the mam
stem from the requirements that the integrand of (1) has proper behavior
near the ongin and mfimty to insure that the integral 13 convergent
We onut details for the dersvation of the vartous cases, but we present
a sketch of how they are obtaned The behavior of the G-function near
the ongm 15 governed by 5 2(7) and if the G-function near mfinity 1s
algebrarc as 1n Theorems 1, 6 1, and 7 of 5 10, then the mtegral m (1)
converges provided that (3) holds This situation 1s covered by Case t
When n = 0 and arg 5 1s suntably restnicted, the G-function for large
argument 15 an exponental decay (see Theorem2 of 5 10) and this
situaton ts covered by Case2 When the G-function near wnfimity 1s
algebraic and sinusoidal, we get Case 3 Here the descriptive properties
of the G-function can be deduced from 510(2 5,9, 12, 13) In these
situations condition (4) anses, since for a > 0,

lr,w"”ydvl<w £ >0, 0<y<l, R<y—1 (5

Note that the latter integral 1s fimte when 8 = 01f R{a) < —1 When
g=p+2 qg=p+ 1, or g=p, the restnctions on argn can be
changed provided we also alter the condition (3) to (3*) The behavior
of the G-function near infinity tn these situattons can be deduced from
510(16, 17, 19, 20, 22, 23) and condiions for the validity of (1) are
given by the additonal Cases 4-7

In all the following cases, p < g 1fp > g, then

f:‘y”,cm"(”y\ d}_r’y.lcm L l*b.),,y

1~ ay
:Lx"G;‘;(q ::::)dx ©

"Thus conditions for the valdity of (1) when p > ¢ follow from the cases
for p < ¢ by an approprate change of notation, that 1s, pergq, me>n,
replace £, a5, b, 5, and arg g by m + 1 — g, 1 — by, 1 — gy, —s, and
—arg n, respectively

The cases for the validity of (1) are as follows

CAE! 1<n<p<ql<m<q(3),8>0n#0,|agy| <dn
Equation (1) 1s also vahd under the conditions {3), 8 >0, 7 # 0,
largy| <3rforp 21,0 <n<p 1 <m<g=p+ I (butexclude
n=0 and m=p+41), or p21, 0KSn<p0<m<g=1p
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provided in this last instance we exclude [argn]= (6 — 2k)m,
k=01,.,[872]

CASE2. n=0,1Kp+1<m<K¢q3),8>0}argn]| < &=

CASE3. 0<n<p<qg1<m<4q,(3),4),8>0,]argn|=20mor
0<n<p<qg—2,3,4),8=0,argy =0

ADDITIONAL CASES. If g =p 4 2,9 =p + 1, or if ¢ = p, the restric-
tions on arg % in the above cases can be altered provided that in (3) the
inequality involving R(a;) holds for I <{j < p. Thus condition (3)
becomes (3*) as noted. In the sequel, A is an integer (positive or negative)
or zero.

CASE4. 0€<nKp, I Sm<Kqg=p+ 2 (3% @), »#0,
argn = (8 + 2\)m, A is arbitrary if 8 <0, but if §=LA>=0 or
A < —(1 + 8). However, if 8§ > 0, and A = 0, then replace (3*) by (3).

CASES. p=>1, O0<nu<p, I1<m<qg=p+1, (3%, 9#0,
(® + 20 — 1)7 < argn < (8 + 2A)w, A arbitrary, but exclude n = A =0
and m = p + 1 which is covered by Case 2. Also (8 4 207  argy <
B+2+1)wifé >2and —¢ <A <Oorargy = (8§ + 24 — D= if
E>22,1 —¢é< A< l.However,ifn 21,6 >1,and 1 — £K2<K0
then replace (3*) by (3).

CASES. p=21,0<n<p, 1l <m<g=7p-+1,(03%4),7 %0,
argyn = (§ + 2\)m, A is arbitrary if £ < [, but if £ >2,A >0 or
A< —¢& Also argn = (8 + 20 — 1)m, A is arbitrary if ¢ < 1, but if
§/2,/\>]0r1\<1—§

CASET7. p>= 10<n<p, <m<Lg= p,(3")-q:£0(3_1.2\__2),.
argn < (8 + 2\)m, A is '1rb1trars but if 8 > 1 and 1 —8 <X K0,
then replace (3¥) by (3) and exclude jargyn| = (8§ — 2k)m,
k=0,1,.,[52].

-~

5.6.2. InTEGRAL OF THE ProDUCT OF Two G-Funcrions

We prove that

’m G (7;\

*0

;") dx

ki

(;,)G‘“(w\

_‘bl yeesy _bm s Coy —bm+l seeny —bq)

— Rdpee M=t (
g+a,p+T
1 1

—“(11 yeony —dp dT ~an+l yosey ‘-HT,
== -1_ Gritenrp _77__ ! ay,. an d7 y Apiyq geeny a,,) (I)
PHT,Q40
¢ bl L y 7€y bm+1 preey bq ’

is valid under nine cases cnumerated below.
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PROCF  Replace G: “wx) wtheabove mtegmnd by its integral represent-
ation 5 2(1), the order of and evaluate the
inner 1ntegral using 56 1{1) Then apply 52(1) to the integral which
remams To reverse the order of integration, we require that the ntegrals
involved be absolutely convergent However, once (1) 15 estabbshed, the
condittons sequired for absolute convergence can be weakened on
appeal to the theory of analytic continuation The same senarks apply
to all theorems of 5 6 mvolving change of order of integration unless
stated to the contrary In this connection, the conditions we give for
validity of the ntegrals are most always weaker than those given by the
authors we quote

.

Equation (I} 15 due to Meyer (1941a) who gives five cases for 1ts
validity Our conditions for validity described below seem to be the
most thoroughly known

The given conditions anse m much the same way as those for 5 6 1{1)
Agan details of proof are omutted, but we sketch haw they are found
The behavior of the G-functions near the ongm 1s governed by 5 2(7),
which leads to the condition (3} Near infinty, we make use of the
asymptotic behavior and analytic continvation of the G-function as
presented 1n 510 From these considerations the condition (4), or {4)
switably modified, see later discussion, always amses In Casel the
behavior of both G functions near infinity 15 algebraic but not smusordal,
and the conditions anise in the same manner as for Case I of 56 I{1)
When G7' J'(3x) 13 algebraic but not sinuseidal as 1n Case 1, and G% Y{w3)
18 algebraic and sinusordal, we get Case 2 Case 3 amses when both
G-functions are algebraic and sinusordal

When v = Qand arg w 1s switably restricted, G2 %wx) 15 an exponential
decay for x — + 0, see Theorem 2 of 510 In this event the mtegral
m (1) with lower hmit @ > 0 1s defined and converges for all meaningful
values of m, m, etc, provided G '(4x) 1s not exponensally increasing
as x — +-c0, unless ¢ — p > r — o This sifuation 1s covered by Case 4
The condstions of validity for (1) when Gi%ws) and G Jrx) are

and for x — +oc and
for g—p=1— u, are dem]ed in Case 5 The condittons under which
the G- for large can be
deduced from510(6»8 10, 11, 14,15, 18)

In Cases 14, the restrnicuions on arg 7 can be altered 1f ¢ = p + 2,
g=p+1,0rg=pasm Cases 47 af 56 I(1}, provided that 1n the
present nstance, condition (4) holds for y = 1,2, ,p Likewise, if
7=0+41 or r=o+2 the megualitics mvolving argw can be
changed as 1 Cases 47 of 56 1(1), 1f n that notation, m, n,p, 4,5,
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and £ are replaced by p, v, 0,7, p, and {, respectively, provided that
condition (4) holds for 7 = 1,2,...,0. Obviously the inequalities
involving arg 4 and arg w can be altered simultaneously as noted if (4)
is true for j = 1, 2,..., p, h = 1, 2,..., 0. We omit these details.
In Cases 1-5, p < ¢ and ¢ < 7. Suppose p > ¢ and ¢ < 7. Then the

left-hand side of (1) may be expressed as

Co .

d,.) dx.

- n,m 11~ bq TRY .
J, G (Galy ) G2 e
The conditions of validity for this situation are described by Cases 6-9.
Here neither of the G-functions for large values of its argument can be
of exponential growth. If p = ¢ and = = o, then in view of 54(3, 4)
the left-hand side of (1) can be expressed as

(-t [ G2 (5 -

e (2

_._ap

) dx,

so that with appropriate change of notation Cases 1-5 may be applied.
It is convenient to put

d=m+tn—ip+q, p=p+tv—13ic+7),

2)
E=m+n—p, {=p+v—o.

We have need for the following conditions:

Rb+d) > 1, j=12mm h=12.p ()

Rla; + ) < 1, Jj=1L2.,n h=12..,v» 4

a; — b, isnota
positive integer, =1,2,n, h=12..,m (5)

¢;—dy isnota
positive integer, J=41L2,v, h=12.,pu. ©)
3 #%0, w #* 0, (7)

Rs}: o — z d,,% i+l —0)>(—0)R@), j=12.,n (8)

hml hwel

R

Zar—Zb*+i@+l—Pﬁ>@~WHWﬁ J=L2.,v. (9

hw=l hml
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_R(Zh n, ):.., &) o= BE o =3 d) R

atu—b+o>0 f azb,
(10
—a+u+b+o>0 foagd

Tt 1s understood that if etther  or v 1s zero, then condition (4) 1s treated
s empty, and sumilarly for the other conditions
The cases for the vahdity of (1) follow

CSE1 1€n<p<glEm<gl<v<o<nl<p<n 3,
§>0,|argy| <8mp >0, :rgm) < pm Equation (1) 15 also valid
under these same conditions if the inequahties mvolving m, #, p, and g
are replaced by p > 1,0 <1 <1 <m < g=p+ 1 (but exclude
n=0 and m=p+1), or p2L,0<n<p, OKM<g=p
provided m thus last snstance we exclude jargyi = {3 — 2K,
k=01, ,[52) Likewise (1) 15 vahd if i the latter statement we
mteu‘hmge the roles of m, i, etc, with u, v, etc Further, (1) 1s valid of
we Iy ahter the hties m, u, €tc , g, v, etc, as above

CASE2 Let m,m $,4,5 and 7 be as m Casel, 0 <v o<,
1< p<m(8)p >0, argum]| = pr Under the same owcum-
stances (1) 15 also valid for 0 <» €0 <7 — 2,p = O argw = 0
Likewsse (1) 15 vahd 1f the roles of m, n, etc, and p, v, etc, are mter-
changed, whence the conditions (3){8) are replaced by (IH~(7) (9

CSEI O0<ngp<y 1<m<qg 8>0, fagy| = & (or
DK n<PpLy—23=0,agn=0,0KvCo<niguxn
p>00argw | =pr(or0 v <o K7 —2,p=0,argw = 0), 3}{10).
unless @ = b, | qw | = I and arg w -+ arg 5 = O occur simultaneously
mn which event replace {10) by  + v — 22 > 0 Also, if a = b, we
require | arg(l — (—P(glal)l < =

CASE 4 Let m,n,p,q,8, & and arg 4 be as 1n any of the seven cases
associated with 561(1) v =0, 1 <o+ L <p <n BH{7.p >0,
|argw | < pr Equation (1) 15 also valid for all ather possibilities of
m, n, etc, not enumerated above, provided ¢ — p >+ ~ o

The restrictions required for the vahdity of (1) for the Case 4 situatton
‘but with ¢ — p = 7 — ¢ are given by Case 5 below
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First, we record some conditions which will be needed.

V=0, 0+1<l"<7!
_ g e —p) g 0 <argw < pm,
T—0
d=argw-—w(r~—p«) if —pr <arge <0, (an
T —G0
R el D) if argw =0 provided p > 0.
T—0

0<ngp<Lg—2, m4n—p=l1, 8 €0,

’Bzargq-{-;r(z;m—n) if O<argp<(m-+n-+1—p)m

g = agn —;"(i;m —7) if —(m+4+n+1—p)m <argy <0, (12)
8= 7(q ;zzp— n) if

argn =0 provided 8§ < 0.

0<n<p<g 1<m<gqg 38>0,

B=arg~r;+n(q——m-n) if wm<argn<(m+n—p+emn,

q9—p (13)
J: —-;r(—q—;m~n) if —(m4+n—p4w <argy < —bm,
e=3} if g=p+1, e=1if ¢g>p+1

0<n<<p<Lqg—2, 1< m<Lyg,
B = argn + wlg — m —n — 21)
g—p
if mtn—p+2A—Drw<argn<(m-+n—p4+204 1),

g—p—U=

g=g—2—17
i

if asgg=(@m+n—p+20—1)7 provided p <g—2.
In (14), A is an arbitrary integer if m +n —p < L. Hm+n—p > 2,
Ais cither an arbitrary integer >0 or < — (m + n — p).

pr=>=1, 0 n<p, 1<m<gg=p+1,
B:argn»w(rrz+rz——p+2/\~l)
qg—2
f myn—p+D—-—Dr<agp<(m+n—p+2+1)n

(15)
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In (15) A 1s an arbitrary mteger >0 or < —(m + 1 — p) if
myn—p =2 Ifm+n—p <1, A an arbitrary mteger

CASE S Under the conditions g — p = T — g, {3){7), and erther of
the combinanons (11), (12), (11), (13}, (11), (14), {11), {15}, {1) 15 vabd
when cosa+ yw Ye?cosf >0 or when cosa 4 jpefien
x cos 8 =0 and u + v — 2a > 0 whese #, v, and @ arc defined a3 m{10),
provided forther that arg(l — (=Y*¥(n «)) <=

Next we present Cases 6-9 which give conditions for the vahdity of
(1) when p > g We have need for the condition

Rlfa-fufl-0-0rripri-g>0 s=n2 e @9

EASES 1<m<g<pI<ngpl<v<e<nl<p<nBHD
§>0,largy <émp>0largn] <8 Equanon{l} 1s also
valid under these same condtions but with g2 1,0 < m<yq
1€ngp=qg+1org21,0<mKq0<ngp=gprondedin
this last instance we exclude |argy| = (8 — 2k k = 0,1, ,[32)
Further, (1) 15 vahd under the above condrtions of the quantiues g, v, o,
and = are replaced as outlned w Case | Also (1) 15 valid for all m, , etc,
above and v =0,1 Ko+ 1< p=1p>0]agwl < pm and for
allp, v, cte,aboveand m =0,1 g+ 1 Kn < p,8 >0, jargn) <87,
and for m, m, eic, p, v, etc, as just related
CASE7 Let mmp,9,8 and argn be as m Case 6, (3(8),
O0S<v<o<nl<p<np>0,fagw|=pror0<r Ko <Lr—2,
p=0,argw =0
CASE 8 Let pyvoo,7,p, and asgew be as an Case 1, (37N (16),
0<mg<pI<ngpd>0lagy| =dror0KmgLe<p—2,
=0,argn =0
CASE 9 mymetc, as m Case8, g, 7 ctc, as m Case 7, (31(8), (16)

By specal the m (1) and emp} the tables in
Chapter VI we get many mtegrats 1 the fi of
mathematical physics For example, with v = ¢ and g = 1, 1n view of
52(12), we find

fy“f.»x(,lr,}j‘:;‘}[‘wy)G’,":‘(v ;

)
S R S W P PO S
=Tarae el Tk ) w
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valid under the conditions given for (1) (with p = 1 and v = ¢) which
we do not produce. In (17), put ¢ = 7 = 1. With an apparent change
of notation, we get

a,,) dy = B Gm+1.n+1( . l—o a”). (18)

b, I(g) = pHletl c—a,b,

f :Oy““(y + By Gy (zy

The cases of validity for (18) can be derived from Cases 1, 4 (there
interchange m, n., etc., with i, v, etc.), 6,and 8, withp =v =0 =7 =1,
d=o0—1,¢=a«a—o and w = 1/5.

The Hankel-, Y-, K-, and H transforms are

a:,) dx

® 1/2 m,n
[ g2l 632 (o |
0

= @1 g+t (_"l_

p+2.¢ w

a—tva,,a+
be ) (19)

)

a-1 pymnte (N at+dv,a—1tv,a,,a4+ v+ %
o™ GI s (L] bera+ v+ 3 ) @

o 0.
[ veviLea] G (e
0

- p+3,q¢+1

a

[ K™ 677 (o | 7) as
Q

w1 a2 7 a+:}u,a—-.§x/,a
=TT T ), @)

[ : *H,fwx]") G (7

a
b")dx
Q
a—-l_;-{,v,a,,,a~?_,v,a+:}u)
¥

= @ gl ("7
a—13—1nb,

p+3.a+1 {7

(22)

respectively. Again we omit conditions of validity as these are readily
deduced from the cases associated with (1). For numerous examples
of (1), see Meijer (1936, 1941a).

For a final transform, we have

0,46

2 Yg

f:o (= 4+ 6o (ny“

g:) 4y = (2")_1 G’,j’j,_?;‘jj (17:’3 0,3, ”n),

fargz| <=,  (23)
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valid under the three cases cited below We have need for the conditions

Rb) > —} or R(B)>0
accordinges 2 0 or z =0, respectnely,
k=12 .m Ra)<il =12 .n
a, — &, 13 not a posttrve integer, 3 and % asabove @4

R{fn-Ffo)<tori-p o9

Let m, n, etc, be as 1 Cases 1,2, and 3 of 56 I{1) Then (23)1s vahd
as for the latter cases provtded there we replace conditions (3) and (4)
by (24) and (25}, sespectively Further cases can be developed aftes the
manner of the additional cases associated with 56 1{{} For a detaded
discusston of {23) and an application, see Luke {1968a)

563 Laprace TRANSFORM AND INVERSE LAPLACE TRANSFORM
oF A G-Functiov

In 562(17), put o = 0,7 = 1, and d, = —a Then the Laplace
transform of a G function 1s given by

* eorym a — o @, a,
[l e = e aan (257, ®
vahd under the six cases stated below which may be readily found
from the cases assoctated with 56 2(1) The following conditions will
be necded

S=mAn—ip+g 2

R, —a)> 1, 1=12, ,m &}

a;— b, ssnotaposwventeger, 5 =12, ,m k=12 ,m (4
240 w# O )

Ra—a)>» ~1, 3=12, ,n (]

R{iawib.f+;(9—p~1)+(q»p)k(u)>o. rp<e
P

Rfa-Sulviosi-0+a-nro>0 120 ®
D)

R;Ii a.-"{ s +Js > )
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CASE 1. Letm,n, p, q,$, £ and arg = = arg 1 be as in any of the seven
cases associated with 5.6.1(1). Then (1) is valid under the conditions
(3)~(5) and |argw | < =/2. Equation (1) is also valid for all other
possibilities of m, n, etc., not enumerated above, provided ¢ — p > 1.
See Case 4 below if ¢ = p - 1.

CASE 2. Letm,m, p, q, 8, and arg & = arg 7 be as in Case [ of 5.6.2(1).
Then (1) is valid under the conditions (3)-(6) and | arg w | = =/2.

CASE3. 0<n<p<gqg 1<m<q3)7),8>0,}|argz]| = dn,
largw | = =2, unless ¢ = p + 1, |7/w | = 1, and argw + argx = 0
happen together, in which situation (1) is valid if (7) is replaced by the
condition (9) and | arg[l — (—)*¥(3/w)]] < 7.

CASE 4. Let m, n, etc., be as in 5.6.2(13 or 15) with ¢ = p + 1 and

= z. Then (1) is valid under the conditions (3)~(5) and |arg w | < &=
when cosa + |sfw|cos B > 0,0 = argw, or when cosa - | 2/w |
X cos B = 0 and (9) holds, provided further that in all instances
arg[l — (=5 w)j| < .

The following cases, 5-7, give conditions for the validity of (1) when
pP=4q

CASE 5. Let m, n, etc., be as in Case 6 associated with 5.6.2(1), with
= 2. Then (1) is valid under the conditions (3)-(5) {(3)~(6)} and
argw | < 7/2 {] arg w | = m/2}, respectively.

CASE 6. Let m, n, etc., be as in Case 8 associated with 5.6.2(1), with
= 5. Then (1) is valid under the conditions (3)-(6),(8) and
fargw | = =/2.

Note that when m = 1, (1) can be reduced to 3.6(13) and 3.6(16).
The inverse Laplace transform is given by

C+iw a

o (o], e ERR

it

ew:wa—l G;l',qn (2’__
w

valid under the three cases described below. In each case ¢ > 0, z is real,
50,y #0.If s = 0and R(b, — «) > 0for it = 1, 2,..., m, then for
0<n<p<gand 0 < m < g, the value of the integral in (10) is nil
when it converges. This follows from 5.2(7). See also (15) below.
I R() >0, =1,2,...,m = % 0 and ¥ — 0, then both sides of (10)
vanish. If m = 1, (10) can be reduced to 3.6(19).
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Define 8 by (2) We have need for the following conditions
Ra—b&)<l, h=12 .,m (1

a, — by 1s not a posiventeger, § =12, ,n, k=12 ,m {12)

Rifa-Eal+i0-s-0>0-0m0 )
DI

R%éa,-g‘b,-n§>l )

CAET 0<n<p<qg Il <m<q(11),(12),5 >0, |argy| <n,
¢ > max{0, Ri(—)y="yufp = ¢

CASE 2 Let m, m, ctc, be as i Case 6 of 562(1) Then (10) 1s vahd
under the conditions (11),(12),8 2 1, argy| < (5 — i)m Under
these same conditions, (10)1salso vald form = 0,1 < g+ 1 <n< p
CAE3 I<m<qg<p I<n<p U3 321 |agy (=
(8 — $)7 Butsfp = g+ land | zy| = 1 happen together, then replace
condston (13) by (14) and tmpose the restriction | arg(l — (—P+zy)Y <n
Under these same conditions, (10) 1s also valid for m = 0,
1€ ¢+ 1< n<p Further, (10)isvalidform =0, 1 <g+ [ Kn=p,
(12),(13),8 = },argy = 0 unless {zy) = 1 1n which event replace
{13) by (14) and require }arg(l + z) <=

We also have

Jren i s e (R«

_2ml(+o—dy

o —— £, a,
Tave—ay 7 G’.'"..m(vz ,,“d“a).

€>0 g>1, 0<n<p<q 0<m<y,
7#0, 2#£0, ¢>1z) f p=g,
Rl —b)<1, =12 .1 =12 ,m,

r=3, >0 R(a+£d,—2c,—b,)<\, h=112 ,m,
=R =1

=5+l lagal<af2, e < Rl (13)
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This is readily proved from 5.2(1) and 3.6(26). Similarly,

el 1—}-(13_0.! o {0 @5
J’c—im t ’Ff (I + ¢ —a 7)1) Gﬂ.q (..,t bq) dt
— 2771'F(1 + Cp — U) a—1 ymisn :."_' a,,o,c;
S e S M O AR

ce>0; 0Kn<pKyg 1<mKy
*=m+n—3p+q+1)>0 530, %0,
fargz ) < 8%, if p =g exclude Jargz|
= (8% —~2k)w, k=0,1,.,[8%2);
R(a, — d}) < 1, j=12.,mn h=12..,s8
r=s, >0, R ii:d,-—!zrlc,—a-i—ah
-1 »

r=s—1, lagnl<mf2, ¢<R(1). (16)

<1, h=12,.,mn

Another Laplace transform is

[* e o (] ) de = = Gnie (-
q

Jo p+2.¢ 132

>0, farga| <8m, R(B)>0, RB})>—13 j=12,..,m (17)

0, i, a,)’

q

8 as in (2), provided further that condition (4) holds. We also have the
Fourier transforms

® P ST KA W VW e gy - l{”awo
J.o cos yx Gy (o..\ bq) dy = 7'y G, (‘}’2 5, ), y >0.
§>0, larga| <dm, RG)>—13, j=12,..,m Ra) <]l,
i=12..,n (18)

20
f sinyx G (m\'2
0

L I VL G IO, a,,}
b )d:L ="y Gpialg (‘j};«.— b ), y >0,

q
§>0, larga] <8, RGY> —1, j=1,2,.,m Ra)<l,
F=12.,n 19

again with § as in (2) and with the additional condition (4). Other

conditions for the validity of (17)-(19) can be enumerated, but we omit
such details.
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564 EULER AND RELATED TRANSFORMS

57y ye-teiet “'bx»““btl —
[rt-v E AN I

o H NP E S o B R ST

a
5 o
18 valid under the cases described below We always take z % 0 and
m>2 As before define 8 =m+n—%(p+g¢) The followng
conditions are needed

Rb; +5) <Re+f) Rla)<1+REH), k=12 j=L2 ,n ()

a,— b, 1snotapositvemteger, 3=1,2, ,n, k=102, ,m (3)
P

RiYa-} b+@-nbi+ig-2+ 1) >Ra+8 &=12 (@
FR =1

CASE 1 Let m, n,etc, be 23 in Case 1 assocnated with §6 I{1), save
that m > 2 Then (I) 1s vahd under the conditions (2),(3),8 >0,
jargz| < ¥
CAE2 n=0m>22p+1<m<q(2,8>0 agz| <ér
CAEZ 0Cn<p<g 2<m<g @l >0, (argz|=25r
o0 Sn<p Ly 2m>2(2(d)5 =0, gz =0
CAE4 1 <Sn<p2<mKeggp—11(203),83>0
larg z | < &
I g=p+2,¢=p+1, or g=p, the restrictions on argx can be
altered as 1n Cases 4-7 of 56 1(1) provided that 1n (2), 7=1,2, ,p
1 8 = b, , (1) becomes

[ro-mmeeife],,» o -re-sefs

oo

vahid under the cases above with m 3> 1
"To prove (1), replace the G-function i the mtcgrand by 52(1) and
the order of ‘The mner integral can be trans-
formed mto 3 6(10) with z = 1 and so summed by 313 (1) The
remaining ntegral 15 readily rdentified from 52(1) Sec Meyer (1940,
1941b) for examples of (1)
In 2 simlar fashon,

[ro-waiplfe-ra-nen iy ®
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is valid under the three cases described below. Again z % 0 and
§ = m + n — 3(p + ¢). Here we need the conditions

R@) —1<RB)<R@e), j=12.,n Q)

a; — b, is not a positive integer, j =1,2,...,n, h=1,2,..,m, (8)

RIS av— Y b+ —p)Bl > 10— 1—9). ©)

h=1 h=1
CASE 1. Let m, n, etc., be as in Case 1 associated with 5.6.1(1). Then
(6) is valid under the conditions (7), (8),8 > 0, |arg 5 | < &m.
CASE2. n=0,p+-1<<m=<¢q (8),%>0argz]| < on.
CASE3. 0K ngp<gl<m<qg (7-09),8>0,largz| =2dmor
0<n<<p<qg—2,(7-09),8 =0,argz = 0.

Further cases may be developed as in Cases 4-7 of 5.6.1(1).
Note that if p > ¢, the left-hand side of (6) can be put in the form

1
B-1r1 __ .na—B-1 g (J I —b,
[y -rrern G| 20 e
It is sufficient to record the result

1
T EEPAC S0 | mf 18 — . mn+1 . o, ay
f03 (Ch)) Gy, (”y bq) dy = I'(a — B) G35 an ("' b, )18)’
0<n<p<g 1<m<gq RB) <R <RE)+1

for j=1,2,.,m, (10)

provided further that (8) holds.
A gencralization of (10) and so also of (6) is given by (13).
We also have the loop integrals

14 .
T a\eB-l men ay - 2nt 1,0 lap,
J‘m J (1 J) Gp.q ("'y l bq) dy - F(l +_—"B — a) G;n+l,q+1 (.a ﬁ, bq),
(11)
~(14) .
ey o=t man [ | @0 g 2wt mns1 (| @
Jo J (1 _)) GD.Q (~_) [ bq) d_} - I-v(l + ﬂ — (1) qu»l.ﬂ-*—l (~ ba ,%),
(12)

valid under the same conditions as for (6) and (10), respectively, with
the inequality R(« — 8) > 0 omitted.
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From the work of Sharma (1964), we have a generalization of (§)
and (10) Thus,

fPwromie iy (n o Y 3 (e | ) o

THIE+ 1 =y} L s €ordsy
R el L gl

@ =

p—y—u-tk g _ptB=vtk
S o b= 5 .

Y LT A

—ytk
_Z*'_, k=12 .5 (13

18 valid under the three cases given below Let = and § be 23 m the
condstions for (6) We suppose that s 1s a positive integer and that u s
a positive wteger or zevra Let

RE~y)>u—1, Risa—p)<<s, =12 ,n (149
Let none of the followng quantrtres be a positive tteger

-1 —y-u
b g fECLpmyzudr

vep—ut Loy
< .
J=12 5, h=12 ,m ae=12 ,s 09

We also need the condition

)

E] L -
RiT oo o+ 52
Al A=l $

§>!(p»l~q) 16}

It 1s not necessaty to actually enumerate the three cases for (13) as they
are the same for {6) provided there the equations {7, {8), and {9) ate
replaced by (14), (15), and (16}, respectively

If p 2 g, the lefe-hand side of (13) may be expressed as

1-8

[ =58 b G2 (2 122

dy
and 50 1t 15 sufficient to record the formula
.
R e A L N IR

S DOTGA L= )0 ey g {20 0y
- TG ¥4 A P
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k—p y—p+tk—1
gk-‘ 5 }:k— s ’
. vru—p+thk—1 - 7"‘P"':8+k'—1 —
1, = s . J?_= s > k - lazv‘“rsa

0L<r<p<g 1<m<q RB—7)>u—1. Rp-+sb)>0,

E=12mm (17

provided further that none of the following quantities are positive
integers:

y—p—utp~1 wv-—p

a’;—b,., Gy — B ’ . — by, s

where £, }, z, and + take on the values as in (15).

An outline of the proof for (17) follows. Replace the G-function in
the integrand by 5.2(1) and interchange the order of integration. The
inner integral is readily evaluated from 3.6(10) and 3.13.3(2). The result
is a product of gamma functions and a typical factor is I'(p = st) where ¢
is the variable of integration for the outer integral. Now use the multi-
plication formula for gamma functons, 2.3(1), and the outer integral is
easily identified from 3.2(1).

Two special cases of (17) which were proved by Saxena (1962) follow.
With x = sin* 8,8 = v — 1,y = 3, and the aid of 6.2.1(12),

[ sin™% sin(u — 1) G77 (= sing’é?ig") dd

L <
=y rmegrims { 1852 8p, h&‘
= ('5—) Gratiees (f bi,, b: N %
and with x as above, § = u, ¥ = 3, and the aid of 6.2.1(11),
il o - "1.'!..'539‘0;
‘ . (sin®™78,2) cos uf G717 (~ sin™* 5 bc) dé
L 18e-ay, B,
= (—;—) G..,,uc w-‘u( ] ls . bq . fs)- (19)

Sharma (1964) has also proved

[ = 7 F o 83 19 6T (st — 17| £7)
<

<1
= BT G () 10 %
T(D)r(}'—a) Fretem= £ c»bcv_fs
=~ —8)s ty = fi <+ as, kE=12,.75, (20)
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where ¢, and f; are defined in {(13) 'To discuss condimions of vahduty, let
RB) >R(p) >0, Rly—a—p)>0, Ry—a—§2>0,
R(sby +8—p)>0, Ah=12 ,m Qn
Risa,—p} <5,  y=L12.,n,
and suppose that none of the following quantrttes are positnie integers:

_ete—1 P‘Y+&+v‘b
s ’ 5

4 —bh. a4 %
paf*"—h, ﬂ—v+:+~<v' ﬂ—u-:l—ﬂ'm)
y=12 .n k=12 .m ye=12.,s
Then condstions of vahdity for (20} are the same as for (6) provided that
there the equattans (7), (8), and (9) are replaced by (21, (22), and (16},
respectrely. In all these conditions p << ¢ If p > g, the left-hand side
of (20} may be wnitten as

f:y"(l — 3R B ) 577(!11”?)-“ “ :Z'.) o

It 1s therefore sufficient to record the result
.

[ #70 —  Fe 8 0 67 (a0 — 2
.

L QTN s [ 8000, h
=TT = )
Bophol yoxzemedbol yiizs @

)

W=

where gy and %, are defined 1 (17), provided
I<e<p<g IKmq S=min—}p+g >0 |ags|<dnr
REY > R6) >0, Ry ~a~p)>0 Ry~a—§>0,
Rlp+sb) >0, &=12 ,m
Rlp—B+sa)<s, =12 .n
and that nene of the following quantities are pasitive integers

a—by, af_ﬂ""%,

y-—a-p-l+o Bop
gt

Y
L’:"”, %‘7_‘” with b v, and o assin (22) 25)

Praof of (23) 1s much Like that of (17) and we omut details.
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Two special cases of (23) are of interest. If f = « — 3,y = 2, and
we use 6.2.1(5), then

1
J' xo—l(l . x)a-bﬁ/ﬁ[] + (1 . x)llz]l-za G’;’: (zxs(l - x)~s (l,,) dx
0 ' b,
— (2")1_3 (d - %) s/ mi2san+s (| 859 Qp> hs
- e Goisaases (" Wy, Vs » bq)' (26)

Again in (23), replace a by « — 3, then set § = « and y = 2«, and use
6.2.1(5). Then

1
f .‘\'a—](l _ x)u—p—l[l + (1 _ x)l/2]l—2u G;)n.qn (sz(I . x)—-s afo) dx
0 ) b,
__ (21 msosings 85,0, by
- (ms)l/2 Gl lreares (" W, ¥, be),
’ - k - 1 , - k _
w, = 3‘-—%—— ¥ = 3‘—%———%— k=125 (27)

The substitution x = sech? @ transforms the left-hand side of the latter
into

Z) da. (28)

Q¢

ee]
2 J e—&('.’a—l) (sinh 9)2a—2a—1 Gz‘.: (z csch® @
0
From the work of Saxena (1963), we have

o0
.[0 PN 4 VR (1 )y G (zlr gtm (1 + t)1/2$23

Z p) g
Q
(2m)M/2-r=s Q112 p2a-1i2

- (r + sp+e(r — s)i-»

a
:r..r

r + S)H-s (7' —_ S)r—-s

m+r+s,n+2r
S Gp+'.’r.q+::r ((

Cor, @
dr+s ’rb r )a r > s, (29)

aqy er—-s

_ (2”)1/2—2r 21/2 =172

T+ S (s — r)t-n

x Gt (2ol =0T
(s +r)e*r

Pirieqertse

C._,;, ap ’bfs_r)’

r+s s ¥q

p1-2r piou-1/2

Grerner ( z

= Svraeareans T T X — ) = peenaser W

€y a
dzr,b:)’ r=s, (31)
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where 7 and ¢ are positive mtegers [s can be zero in (29)] and

o=t32 v=12 .2,

201 =2u—2 _
d, = —Tu =12 ,r+s .
,_:Z“_‘Q.IHFT‘Z_A, w=1,2, ,f—s
PRIt K 2t N S

2F—2r

“To simplfy thscussion of cases for the validity of (29)~(31), we suppose
that 2 20,8 = m 4 1 — 4(p 4 o) We have need for the followmng
conditions

Rirby +2) > 0, h=12 \m, -
RAvpttrraa)<risth 5=12, ,n ey

Nore of the quantities
ay~by, a—d,, ;=12 mn h=12 ,m, o9

G&—b 6—d, e=12 +s  v=12 2,

1S 2 DOSIIVE 10teger

< - e—p
rifa-fu+ @ Daa-nwl>0-1-0 09

elfa-far@soie g

Three cases for the validity of (29)(31) follow

CASE 1 Let m, m, etc, be as in Cases 1,2, and 3 of 56 1(1) Then
(29)(31) are vahd as for the latter cases with 5 = z, provided there
we replace condition (3) by (33), (34) and (4) by (35), respectively

CAEZ 1<m<g<p I<ngp o g1, 0€<m<y
1<n<p=9g4+L3>0larga} < ¥

CASE3 OSmg<p,| n<p,(33)(34),(36),5>0laxg2[<5ﬂ.
0 <m<q<p—2 033 (3) (6),5 = 0, arg 2
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Equations (29)~(31) are proved from 5.2(1), 2.3(1), and the formula

® - TN —2—p)
-1(1 N2 L (1 - DVRPRe dE = N
J.o ( + ) [ ( ) ] 22 11"(%_{.,\_..#)

R >0, RA+p <4 (37
which may be proved from 6.2.1(5), 3.6(10), and 3.13.1(1).

5.6.5. INTEGRAL TRANSFORM PAIrs INVOLVING THE G-FUNCTION

The functions f (x) and g(x) are said to form a pair of Fourier kernels if

6) = [ K0 by S = [ ) g d M

are simultaneously satisfied. The kernels are called symmetric if
k(x) = h(x), otherwise they are unsymmetric. Narain (1962, 1963) has
shown that

. 2 b
R(x) = 2y 2GR (x_y a, ’dq)’ 2
y-1/2 2y ‘—b y —a
h(x) = 2y Gl mim (x —a. _c:), ©)

are unsymmetrical kernels. If p = ¢, m = n,a; + b; =0forj =1, 2,..., p
and ¢, + d, = 0 for h = 1, 2,..., m, then the kernels are symmetric,
a result previously derived by C. Fox (1961). For conditions of validity,
see the sources cited.

The following pair of transforms are due to Wimp (1964). If

g = [ :o it ' L—vti zq— v ) f) a, (4)

then

f(x) = if= J.:Q termi{emt A(we™ v - dt, v ~ 1t) — e A(xe™ [v - it, v 4 it)} g(2) dt,
©)

~ o -m,p~n+1 [, ~piy '”n+2 yeeey —ap » &, —@y —a2 vy ™
A(‘“ [o, ) = Ggwre.a (“' b b b b I; T bn A .
“Um+l s TUm42 9000y Ty 701, —0g yoory —Upy

This set of relations contains some known important special cases. Thus
the Kontorovich~Lebedev transform pair is

8(x) = (2} wsinh s [ :° 1K) f(1) dt, ©6)

S0 = [7 Kulw) ettt ™)
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and the genesalized Mebler transform patr 15
#5) = (cin) T~k + ) T~k — myomhns [ PR} ()
'

s = [T Ph et ©

In (8) (7) K (1) 15 the modufied Bessel function see 627(8) and m
(8) (9) P(t) 15 the Legendre function see 623 For proof and other
specal cases of (4) (5) sce Wimp (1964) For rather extensive tables of
the transform paus (6) (7) and (8) (9) see Erdelyret ol (1954) and
Obeshettinger and Higgins (1961)

57 Asymptotic Expansion of G} )(z) and G} (z) for Large z

“Fo simphfy the exposttion m this section as well as m Sections 5 8-5 10
1t 15 convenient to introduce some notatton Ve let

m4n p=s g m-n-—» {1y
man Hp+g=1Hr v p B-dp-m n+2=n g p=c
e=1 ffo=1 e=i o o>1 @

Certain restrictions on the parameters a, and &, of the G function
enter the hypotheses of the theorems These are called (A), (B), and (C)
and are as follows

(A) a~b %123 for j=12 n h=12 m
[
(B) a—a, #0 +1 £2 for y1=12 n ;#¢t “®
€ @ —a#0 41 42 for yh—12 p y#E (O
Actually (B) can always be deleted from our assumptions provided we
understand that when (B} does not hold z passage to the frmut 1s required
as 1n the discussion surrounding 5 1{27) A sumilar remark also holds
for (C)
Define
Glsla) = GLfs|® B Ty A ) ®
.
Further with 1 < ¢ < p < ¢ let us formally write
2 (L 4 b, — ag) 1 b —a, ¥
Tl ¥ e, —a) 'F'“‘(|+a:~n,*l“x) @

provided condition (A) fsee (3)] holds with j = t and m = ¢

By (slia) =
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Theorem 1. If1 <t < p < ¢, (B), then
G:”:’l(z @) ~ Ep ozl ar),
{z}— oo, fargz | < Qo+ 1)7 — 38, 8= 0. (8)

Theorem 2. If 1< n<p<q | <m<q, (A)and (B), then with
p >0,

Gn) ~ 3. expl—inly + 1) a] A™(e) By oz explin(v -+ 1] ll @),

t=1
x| — o0, larg e | < pm — 9, § =0, ©)]
where 4™ (1) is defined by 5.9.2(1).

Formulas (8) and (9) are proved by evaluating the residues of the
integrand in 5.2(1) which lie within the path described by 5.2(4). Note
that the expressions on the right-hand sides of (9) and 5.2(11) are the
same.

Theorem 3. If m+nz=2p+ 1, (A) and (B), and largz| <
(m + n — pYm, then Gy 5(2) can be continued analytically outside the unit
circle by the expansion

Ghn(3) = Y expl—in(p —m —n + 1) a] 4™} (2)

t==1
X E, (s explin(p —~m —n + D] a,). (10)

Theorem 4. If (A) holds for n =1 and m = p, and |argz | < =,

then Ghp(s |l a)) can be continued analytically outside the unit circle by
the expression

Gruslla) = E, (=i ay). (11)

Theorem 3 has been proved in 5.3. Theorem 4 is the special case
n = | of Theorem 3,

Theorem 5.

a0 .
Gr.v (“’

a
o) ~ Hadlo),

al>o, Jags|<(ot+gm—3, §>0, (12)
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where o and « are defined sn (1), (2) and where far brevity we torste
- -
gy = L gty 5, ptigere,
X

My=1, o=l —0)+ 5 —4h

P 2
=Ybh, h=Ya a3
in A

The M,’s are independent of z and can be found from the theory in
5115 Fork = 1, we have

@1

B e A S R o, B )

where
s-f£%u. 4-fFTea a9
&4

Yie sketch the proof of (12) as follows Let GF %(z) be defined by 5 (1, 2)
Note that except for 3, the integrand of this representation 1s  k,(2) of
2 11(25) with an appropmate change of notation There replace = by s,
gbyg—1,1—8, bydfor;=1,2, ,qand1—a;bya fory=1,2, ,p
It foflows that

(A0

st
") = (i) (Y St [ T YB ool — o — )
v i z
-~ j’ 22 0(I(o8 — os — N)) .x:],
L
where A" comes from &; when the 2pproprate substitutions are made
Now

Zeyd 1

(@i 3 f o8 = o5 g1 s = LN cept—aniiy

1n view of 5 2(1, 14) and 5 4(4) Hence,

fo-1) 2 10
+5) = 0 et et 72 [)j ——( A R‘]

It may be shown that R, ~ O(=—¥F) for arg s as m (12) and so we
armveat (12), (13) For complete details of the proof, see Braaksma (1963)
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5.8. Differential Equation for G}7(z)

From 5.2(1) or 5.2(7), it follows that y(z) = Gp7(s|p?) satisfies
(=) 5@ ~a,+ 1) — (¢ —8)]3(x) =0, = 5 d|dz, ey

where 7 is defined by 5.7(1). This equation is of order max(p, ¢) and in
view of 5.4(3), we can suppose that p < ¢.If p < ¢, the only singularities
of (1) are at ~ = 0, a regular singularity, and at ¥ = 0, an irregular
singularity. If p = ¢, 5 = 0 and x = o0 are regular singularities, and
in addition there is a regular singularity at = = (—)~. The solutions of
(1) in the neighborhood of the singularities ¥ = 0 and 5 = <o have
been fully investigated by Meijer (1946, pp. 344~356). No fundamental
system for the neighborhood of z = (—)" has been given in the literature.
In this connection, see Norlund (1955).
In the neighborhood of & = 0, the ¢ functions

(&) = explinz + 1) 5] G35 (= expl-tn(r + 1] o L)

bh y bl yooey bh—l y bh+1 goeny

h=1,2..,4q (2)

form a fundamental system of solutions for (1) provided that no two of
the b, terms » = 1, 2,..., m, differ by an integer or zero. This condition
is really not essential, see the discussion surrounding 5.2(9). Clearly

n(z) = At —a5) Pthi—ap) oo
Jh("')‘— F(l+bh~_bq)mhqu—l(l+bh__b§ (—-')A-):
pgq._l, or p=gq and lzl<l. (3)

It follows that G7J(s) is a linear combination of the functions (2).
The pertinent expression is given by 5.2(18).

Next we consider solutions of (1) in the vicinity of the irregular
singularity 3 = co. We distinguish two cases.

CASE 1. p < ¢. For every value of arg 3, it is possible to find integers A
and o such that

fargz + (v-20 4+ Dw} < (do 4+ )=, 4)
fargs + (-2 7| <(o+e&)m P=wowt+l., oto-l, (5)

where v, o, and ¢ are defined in 5.7(1, 2).
If condition (C) [see 5.7(5)] holds, then the  functions

Guim explin(v — 20 + Dl a), ¢ = 1,2, p (6)
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satisfy (1) From 5 7(7, 8) these functrons tend algebratcally to zera ot
to wfinity as | z ' ~ <o, and further, for large values of | z |, are hinearly
independent because of condstion (C) If (C) does not hold, we can get
independent solutions via hmit processes, as previously explaned
In this event, the algebraic character of the soluttons 1s not altered as
| 31— «© Thus (6} grves nise to p solutions 1 the region of 2 =
To get the remaining o = ¢ — p solutions, consider

G’;':(::xp[m(vﬁl\b)]l::) b=wwtl, wto—1 (7}

These functions also satisfy (1) and, m virtue of 5 7(12) and (5), tend
exponentially to zere or to mnfimty as | z] — oo Furthermore, the
solutions (7) are hinearly independent Ve have thus proved that if
¢ > p and the condivons (C), (8), {5) hold, then a fundamental system
of {1} rahd mear = = o 15 formed by the p functions (6) and the
o = ¢ — p functians (7)

CASE 2 p = g Agan we assume that the a,’s satisfy condition (C)
Ve also suppose that

agz—rm o 42m, k=012 )
Then from (4) we can find an 1ateger A such that
largz —(+ + A~ Dw| <7 (@]
In this case, (6) with ¢ = p sausfies (1} Further, because of (C) and
57(7, 11), these p solutions are hinearly independent
‘There may occur tn a formula not the p functions (6), or the same set
of functions with g = p, but only the first # of these, namely,
Gizeglny ~ A+ @), =112, ,m, (10
or the latter set with ¢ = p For thesc to be lImearly mdependent,
condition (C) can be replaced by the less stringent condition (B}
If we have to do with less than the o functions G% 3(z), namely, the
a{a < o) functions

Gidlzexplinly — 28),  d=w,0+1, wte—l, an

then the condition (5) meed not be sabsfied for p = w,w + 1, ,
w4 o— 1 butonlyfordi = e+ 1, ,ota—l



5.9. SERIES OF G-FUNCTIONS 183
5.9. Series of G-Functions

5.9.1. INTRODUCTION

The multiplication theorems of 5.5. permit for the expansion of
G-functions in series of G-functions. Another group of formulas of
this kind is taken up in Chapter IX. Here we delineate four important
expansions which express Gj'(z) as a finite sum of G-functions with
the same p, ¢ but with m = g and n = 0 or n = 1. For the most part,
proofs are omitted. For complete details of the proof for the expansion
theorems and generalizations of same, see Meijer (1946).

Corresponding to each expansion theorem there is a companion
theorem (in one instance there is more than one companion theorem)
which gives the conditions under which the expansion theorem expresses
Gyq(2) in terms of fundamental solutions of 5.8(1) valid near x = oo.
These data coupled with the asymptotic expansions of G%3(z) and
G'%(s) [see 5.7(8, 12)] lead to the asymptotic expansions for Gp7'(2)
which are developed in 5.10. The asymptotic expansion for the ,F, is
treated in 5.11.

5.9.2. NoTaTiON

We freely use the notation of 5.7(1-6). Other notation follows, Let

mangy i1 HJ"-A e, —a)*T(1 + a, —a,)
aagy) = -y T el o cal, )

1=m+1

Where no confusion can result, we simply write 4(f). This practice of
omitting super and subscripts when appropriate is usually adopted in
the definitions which follow. Thus we define

,-,T(ia,_ 5 b,)

i=1 J=m+1

A =A™ = (=) (2mi)™ exp ' @

;f in the right-hand side of (2), 7 is replaced by —1, the resulting expression
is notated as A™} or simply as 4 when appropriate. The bar over

a letter convention also applies to the quantities defined in 3)-(5),
(13)~(16) below. Thus,

B = BI"™ = (=) (2ni) exp {ix ( Y by — i a,) , 3
=1 j=n41
B =By = (27i)" exp ?—f?r ( i b, — i a,) . 4)
y=1 1=n+l
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In these and all other 1t 1s supposed that the p are
such that the defimtions make sense Let

Tt = 2ol 5 omyy
Th. 0 —repma) = &°

|sesp(Zima)l < 1, S YR) = Q) ©)

Ve next present some ¢
Pyt

to facilitate the comp of (k)

6=t G-Festoa)l G- ¥ eobelstal

reibien o
é = ¥ :xp(lmZn,‘), rx1,
rre <, &
L=1 = i cxp(zmib,‘), re1 o
[T T P4
Then
T veer < {5 (v el F 2, g
T erie= (L ye<)(E 200 ) ®

and so with £(0) == I, we have the recursion formufa
2
QR = (Y& + Z‘(*)H £k —r), k21 [
E=1

In particular,

Ay =&—4L KD =L~ &+ &XD,

(i0)
20) = & — L+ &£22) - £201)

For an alternative recurrence formula, we proceed as follows Let 2
stand for the left-hand side of (5) The loganthmic denvative of 2 gives

—ofl_ ¥ exp{Zmb;) & exp{lma)) ] _
oe Q[ L T ety " LT remmy]” P

IS
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and by Leibnitz's rule

DR =Y ( ) K (Dr0)

L=0

v [_ z": exp[2imbi{k 4 1)] n i exp[2tma;(k -+ 1)] ]

S (T — xexpimd )1 7 & (1 — xexp[2ma )i |

Since D*(Q2 evaluated at & = 0 is k! (%), we find that

Q4 1) = [k + D] 3 (Sves — Toua) Rk — 1), an

r=0

where
a

S, = Y exp(2may), T,= Y expQinby), r2=21 (12)

1=1 1=m+1

Observe that the &’s and the S,’s are related by Newton’s identities for
symmetric functions, see Bochér (1936). Similar remarks pertain for the
{’s and the T,’s.

Let

E 2ima M)
1‘1 Xex ( 17 :)] — z
p - g™ x",
ﬂ;ﬂ “ — xexp(Zl"b,)] A=0 ( )

|xexp(2imb, | <1,  E™"Q) = E(\), (13)

[T anss [1 — x exp(2ima,)] E
[T — xexp(2ima)] T, [1 — ~ exp(2inb)] ;0 o™l 7) a7,

| exp(2imb)} < 1, | x expimay)l < 1,
83" ) = 6(, ). (14)

By appropriate change of notation, recursion formulas for the evaluation
of E(A) and 8(/, r) follow from (6)-(12).

Let
OUIh, A) = S‘j—l E@)Q%h +A —r —1), DTI(R, A) = D(h, X),
(15)
A
e A) = Y EQA — ) %(h — 1), Poia(h A) = (h, X),
rel

(16)
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Ryp(h ) = A" 90, ) — A Bk, ~r ~ X+ 1), RTI( ) =Rk, ),
n

T30 3) = —lexp(era) OGN — 1) + exp(=ina) BOL —r ~ N}
X 4%} + explimafr + 24 — ) A" D
TR =T
(i8)

DTI0) = (=2m) < exp gm (2; a— ;Z, A.)E
X {BEQ) — BE(—r — X}, D3N = DR
19

593 ExpansioN THEOREMS

Theorem 1.0, Under conditions (A) (B, 1 Sn <p £ a1 <m<q,
v+ 1 < 0, A an arbtrary integer such that O < A < ~v — 1, then

Gy als) = T expl-mafy + 24 + D] 4() GF fx explan(e + 20 + Diia) (1)
it
Theorem 1.2 Under conditions (A), (B), I Sn<p<q2<m<yg
v+1<0,jargr| <pmAasm(l), —pm < argz + 247 < pm, 2
then (1) expresses Gy }(z) 1 terms of fundamental solutions tald ¢
near 3 = @

Equation (1) 18 readily proved from 57(6) and 52(11,15) The
spectal case X = Qof (1)1 the statement § 2(19) For the proof of (2), the
nequality —ne << arg z + 2dr < pmimplies thatjargz+ (v + L4 | <
{37 + L)r whence 5 8(4) witth A replaced by —A helds for the functions
G2} on the nght of (1) Thus these functrons are fundamental solutions
Theorem 21, Under conditions (A), (B), ¢ =1, 0<n<p<q
0 m < g r an arburary integer such that v > max(0,v + 1), then
~
G3(z) = 4 §, () G} Yz expln{y - 28)])
=

+ 3 explenadtr—v- 1] 40 G Ym explino-20 + W) (3

This expanston 1s also valid if ¢ 15 replaced by ~1
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Theorem 2.2. Under conditions (A), (B), 1<n<p<g 2<m<yg
v+1<€0, —pr<argz <(r+€mran arlntrary integer such
thatr = 0and —pr < 2rm — arg & < vy, then (3) expresses Gpig(z)  (4)
in terms of fundamental solutions valid near z = 0.

Theorem 2.3. Under conditions (A), B), 0<n<p<g 1<m<yg
Ipt+dg—de<min<<g+l, —pr<agr<(rt+emr
an arbitrary tnteger such that r =z v + 1, —pr < 2rm—arg x < 9m,
then (3) expresses Goq(z) in terms of fundamental solutions valid
near ¥ = .

©)

Theorem 2.4. Under conditions (A), (B), 1<n<K<p<g 2<m<Ky,
v+1<0, ~(v+ ¢ nw < argz < —vm, r an arbitrary integer
= 0 such that —pn < 2rm -+ arg z < 4ym, then (3) with 1 replaced
by —i expresses Gy, 3(z) in terms of fundamental solutions valid near ©)
T = co.

Theorem 2.5. Under conditions (A), (B), 0 < n<p<yg 1 <mKy,
Ipttg—te<mtnLg+]l, —(rt+em<argz <pm r
an arbitrary integer such thatr Z v + 1, —pw < 2rz - arg z < 7w, )
then (3) with i replaced by —1 expresses G7,'7(2) in terms of funda-
mental solutions valid near z = co.

PROOF. Tirst we take up proof of (3) for which we distinguish three
cases. They are:

CASEL 1 <n<pLqgv+1<KL0,r=0.
CASE 2. 1<n<p<q,0<v+lr>v+l
CASE3 n=0,¢g21,0<p<q0<m<qgr>=214+qg—m.

We prove Case 1 only, as proof for the other cases is similar. The
proof is by induction on r. Clearly when r = 0, (3) becomes (1). Let us
assume that (3) is true with r replaced by » — 1. From 5.4(11),

Gl explin(y — 2r + 3)]| a;) = exp(2ria;) GL(s explin(y — 2r + 1)) a;)

— 2 exp(fmay) G35(= explin(v — 2r - 2)]).

Put the latter into Tf, of (3) with r replaced by r — 1. Then we get the
sum >'{.; in (3) and also the sum

271 Gz explin(v — 2r + 2)]) i exp[—ima(v — 2r + 2)] A(2).

t=1
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It may be shown from the defimtions 1 59 2 that

2, expl—tmafe — 2 ~ 2} 4 = ~(127NARY ~ 1) ~ 486 +1 - 1)),
-

and 1n the present nstance this reduces to
—(U2m) A — 1)

since £y + 1 — r) vanishes when » + 1 —r & —~1 Thus the sum
3173 on the nght-hand side of (3) frecall we assumcd (3) true with »
teplaced by r — 1] becomes, because of the above substitution, the sum
3253 of {3) and proof of (3) for Case 1 1s completed

Next we tumn to the proof of (4) After the manner of the proof of {2),
1t 1s clear that the G2 functions on the nght-hand side of (3) are
fundamental solutions From the inequalities wnvolving arg z m (4),
drr < (3g — 3p + 2¢ + 4) which imphes that r < ¢ — g + 1 Hence,
the number of functions G§ § on the nght-hand side of (3) 1s at mostg — p
These functions satsfy 58(S) with ¢ = r and so are fundamental
solutions The proof of (5){7) 1s similar and we omt detasls

Theorem 31. Under conditions (A), (B), ¢ =1, 0<n<p<yq
0L<mLgrv+120, Iaﬂarbllmrymltgnm(htlmto Kr<v+ 1,
then

Gy =4 El 200) 633" 4 A Z 209 Gygse™)
=

+ 3 explra2 - v~ D) ) Gile expliny 20+ Dlla) (8
P

This expansion formula 15 also vahid if 1 15 replaced by —¢ provided
that r 2> max(0,» + 1)

Thearem 32  Under conditions (A), (B), 0<n<p<<q 1l<m<yg,
pHISmtn<ig+ip—de+ 1, lagzl <(r+e)m v
an  arbitrary integer such that O Kr v, —pr < )
2rm — atg 5 < wr, then (8) expresses G (2} n terms of funda
mental solutions vahd near z = o
Theorem 44, Under condiions (A), (), ¢ =1, 0<n<p <y
0 < m < g, Aand p arhitrary integers with O < p < g — p, then

GPiz) = Z R(h,3) G} Yz explin{y — 2k - 24 + 2)))
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+ 3 R(k, —r—A -+ 1) G(x explin(2p — g —m — 1+ 2% — 2))

k=l

+ Y, explinayg — p — 20)] Tk )

P
X Gli(z explin(2p — g —m — n — 22 + 2p -+ Dl @) (10)

Theorem 4.2. Under conditions (A), (C), 0<n<p <q, 0 m<y,
A and p arbitrary integers such that (v 4- ¢ 20 — 2) 7w S argz <
(-r-{-e+2/\)7r,(m+n—é,_’p+4}q+2/\—2)1r<2yn+argz< (11)
(m +n — §p + 3q + 2X) =, then (10) expresses Gy:q(2) in terms of
Jundamental solutions valid near z = o0.

Proof of (8)—(11) is much like that for the previous theorems. We omit
details and refer the reader to the papers by Meijer (1946).

5.10. Asymptotic Expansions of GJ7(z)

As previously noted, asymptotic expansions of G 7 (2) for all values
of m, n, p, g (with p < ¢), and arg = for | 2 | — o0 can be derived from
the theorems of 5.9.3 and Theorems 1 and 5 of 5.7. Indeed, in his work
Meijer (1946) investigates all of the G-functions which appear on the
right-hand side of the expansion formulas in 5.9.3, and from these he
determines those which are dominant.

It is helpful to clarify the concept of dominance. We say that 4(2) is
dominant compared with B(2) or B(z) is subdominant with respect to
A(s) if the order of the lead term of the asymptotic expansion of B(z)
is less than the order of the error term in the asymptotic expansion of 4(z).
To illustrate, consider the asymptotic expansions

@ @
A=) ~ e Y aps*, Axz) ~ 28 Y ayzxF,
P =0

@« @«
AyR) ~ 22 Y ayz ¥, Ayz) ~ ez 8 Y agzF,

k=0 kel
w© @

Ayz) ~eF Y agsF, Ayfz) ~ e Y ags¥,
k=0 k=0

where it is supposed that no ay,7 = 1, 2,..., 6, is zero. Assume & > 0.
Then clearly 4,(z) is dominant compared with Ay(2),..., Ag(z). Compared
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with Ay(z) and Ay(z), Ax(z), As(z), and A,(z) are domunant, and As(z)
1s domymant compared with A,(z) However, A,(z) 15 not domnant
compared with Ay(z)and A,(z) Thusamong the functions Ayf2), , Ag(z).
there arc three dorinants They are A,(z), Ay(z), and A,(z) Quahtatnely,
we say that 4,(z) 1s an exponential growth, Ay(z) and dyfz) ate expo-
nential decays, A42) and 4,(z) are algebraic, and A () 1s algebraic and
stnusowdal

‘To get asymptonic expansions for G7 7'(2) 1t 15 only necessary to retain
the dominant term or terms in the nght-hand sides of the expansion
formulas m 59 3, unless, of course, the coefficents of these dommants
vanish The coefficients depend on the parameters g, and b; and
general do not vanish \We suppose, therefore, that if there 1s only one
dommnant function, the coefficient of this function 1s not zero If there
are two or mose domunants, then at least one of them has a nonvamishing

it If all the coeffi of the fi vansh, 1t 1s

necessary to further explore the nature of the above expansion formulas
‘We omit such details

We follow Meyer and gtve only the dormnant term or terms 1n the
asymptotic expansions However, for the benefit of the reader, we tell
from which expansion theorems the results follow so that the complete
expanston may be deduced if desired This 1s lustrated later when we
recard the complete asymptotic expansion for the F,, ¢ < ¢ In the
theorems which follow, we make free use of the notation introduced
miTand 592

Yheorem 1. Under conditions (A), (B), 1 <n<p<q 1 <mKy,
p >0, then

GR i) ~ 3, expl—rmade + 1)] 4(1) E, (= expfenf> + 1)} a),
=1
12>, jagzi<pm—3 3>0 o]
This 1s proved from 593(1,2) 1f » + 1 < 0 and from 59 3(3, 5) of
p>0andv+ 1320
Theotem 2 Ifl<p+ | <m g, then
GPi(=) ~ A" Hy 2 ™) f m<g—-1,
jzl—0, Sgagz<(m—p+hnr—8 $>0, @
Gl ~ A", (o) of m<g
121w, B-lm—p+Mr<agr< -3 B3>0, B
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G‘M.O ,,)NAm.gH”.q(zel‘n(a—m)) +.4’"'3H,,,q(ze"""(°"")),

0.0\~
if m<(g—1), ¥+, thatis argzs =0 4
Gg:g(z) ~ H (%),
|z]— oo, Jargz | < (o + €7 —8, &>0. ®)

Equations (2)—(4) are proved from 5.9.3(3). Equation (5) is the same as
5.7(12).

Theorem 3. Under conditions (A), 0 S n <p<g—2,1 <7< §o
forp+1<m+n<p+ @) then
G?::(z) ~ AH,,'q(zei""),
|zl—00, S§LageL(z+)7m—8, 8>0 (6)

Gra(z) ~ AHm.q ze_im,)v
z] - o0, S—(+DrLarge < —8§, §=>0;, ()
GTNz) ~ AH, (2e™) + AH, ((2e7™)  with 1 <7 <o,
z— 400, thatis argz = 0; 8)

Go(=) ~ AH:).G(ZB{"V) + A'Hp'q(ze—i"")

+Q

+ 3, expl—irafy + 1} A() Epofze"" ) a) ©)

t=1

with p = 0, condition (B} and x — -+ o0, that is, arg z = 0.

This is proved from 5.9.3(8, 9).
Theorem 4.  Under conditions (A),0 S n<p<qg 1l <m<qp>0,
then
Goia(z) ~ AH, (=€),
jz|— oo, S+pr<agz K (r+em — 3§, §>0; (10)
Gi(e) ~ AH, fze™™),
js]— 00, 8—~(r+gm<agz<< —pr+8§ 8§>0; (11)

Goa(z) ~ AH,, (ze™) + ¥ exp[—ima(v + 1)] 4@2) E, (5" | a), (12)

{=1
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provided also that condition (B) kolds, | z | — o, arg x = pm,
G Hzy ~ 4y, ,(ze“") + i expizav + )] AHY E, ,(zi"‘”') fla), (13}
&

provided also that condstion (B) holds, | 7| — o0, arg z = —pm
Equattons (10) and (12) follow from 59 3(3, 4, 5), respectively, while
(11) and (13) follow from 59 3(3, 6, 7), respectively

Theorem 5. Under condittons (A), 0 S n S p<g—2,1<m<gq,
if 7 < 1, Aus an arbitrary integer, if v 2= 2, X ts exther an arbitrary mteger
> 0 or an arbitrary mteger < —1, then
GT 34s) ~ D) H, (a4,
jzj—w, S +G+D—DrLags<lr+A+)r+5, (14)
where 8, and 8, are arbtrary small quantities whose signs are chosen so that
the closed interval {8, + a, 8, + ] 35 contained sn the open interval (a, B),
G 3(z) ~ D) Hy = explimly ~ 20)) + DXA - 1) Hy ofx explin{y 22 + 2)]),
g>p+2 |z]—>c, agz=(r+N0—Nn (15)

G 2o(2) ~ DT 2000 Hy poof exp[—in(r 4+ 21 — 2)])
£ D3 310 — D) H, {5 expl—an(s + 2 — 4)))

+ 3 BT+ 1)) TE300 1 Byl nploite - i),

(16)
provided condstion (C) holds, | z | — oo, atg % = (r + 2 — D)r

Thus 1s proved from 5 9 3(10, 11) Note that the case m = 0 need not
be considered 1n view of 5 2(8) For special values of 7 and A, Theorem 5
reduces to previous statements These are enumecrated as follows

16t > Land X = O, then {14) reduces to (6)

¥r 2 1andd = —r, then (I4) reduces to (7)

Tf+ > 1 and X = 0, then (15) reduces to (6)

Ifr = 1 and A = 0, then (15) reduces to (8) with + = 1

If 7 > 1 and A = 0, then (16) reduces to (12) with g == p + 2
1fr =1 and A = O, then (16) reduces to (9) with g = p + 2
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Theorem 6.1. Under the conditions (A), (C), p =1, 0 <n<p,
1 <m < p+ 1, A an arbitrary integer, then

D, Gopnl) ~ Z exp[—ima2A + 1)] T :+1(t A) E,, pia(z exp[—in(r — 2} ay),

te=]

lz]=00, &F+(r+D2—Pr<LKage<(r+2A—-HN7+8,. (17)

This expansion is not valid when # =A=0and m = p + 1. -Fo'r
n=0and m = p + 1, see (2)=(5). The expansion (17) is also valid if

T > 2, —r <A <O, rH+R-PDr<Largz L FF22FHr+8,

or

T =2, l—7<a<], args =(r+2A —§m
REMARK. If 1 <t<n and 1 —7<<A 0, then T7 7t A) =
explima(r 4 2A — l)] Api(t),andifn + 1 <t <pand1 —7 <A K0,

then Tyt a(2 A) = 0,so that (17) withz > 1,7 > l,and 1 — 7 <A 0
is the same as (1) with ¢ = p + 1.

Theorem 6.2. Under the conditions (A), p=1, 0<n<p,
L <m<p+ 1,7 22, Aan arbitrary integer > 0 or < —,

Gy 3:(3) ~ D55a(A) Hy, (= exp[—ia(r + 24 — 1)]),
S+t —PNrLarge K +NF D7 +8,. (18)

This is also valid if + < 1 with X an arbitrary integer.

Theorem 6.3. Under conditions (A), (C), p=1, 0<n< b,
1 <m<<p+ 1,722, Xan arbitrary integer >0 or < —1,

Gop(s) ~ D55a(X) Hy, pea(x exp[—in(r + 24 — 1))

+ 3, exploinad2) + 1] TE5a(t ) Ey.pls xpl—in(r - 2)] )

t=1
ls]—>00, argz=(r+20—1)m (19)

This is also valid if + < 1 and ) is an arbitrary integer.
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Theorem 64. Under comdinions (A), (C), p =1, O0<n<xp,
1< mEp+Lr22 A an arbirary mtegr 21 or < —7 41,

G5 5l ~ D3 Sl — 1) Hy oz expl—rots + 22— 3
¥ z eXpL—tma 2D -+ 1] T3 Salts ) By s expl —rntr -] 0,
lz|— o0, agz =(r+ 2 —§)m (20
This 15 also vakd if < 1 and A 15 an arbitrary mteger
Equations (17)-(20) are proved from 59 3(10, 11)

‘The followmg and last theorem of this section concerns the analytc
continuation of G} 7(3) 10 the general case

Theorem 7. Under conditions (A), (C),p 2> 1,0 n<p0<m<p,
X an arbirary snteger such that (v + 2) — 2 < argz < (1 + 2,
then G}y [(z) can be expressed n terms of fundamental solutions vald near
z = o by the formu

G oz) = ki, T3 36 %) G} 3= expl—imlr + 2 — 1)} a,), @n

and can be continued analytically outnide the unit arcle {z| = | by the
expansion

G = 3, exp(—bmda) TS0 N Ey zenplmrar — D12 (22)
%

Fr=mtn—p>ladl—r<A<0, and we use the properties
of T3 3(t, ) as in the remark followng (17), then

G336) = . explinals — 1014 X0 E, ofz expl—snlz ~ Dl a

largz| <7rm, argz#(r—20)w, k=12 ,[2] @3

Observe that if p =
as that 1 (1) with p = q

p and the expansion 1 (23) 15 the same

Theorem 7 follows from § 9 3(10, 11) It s essentially the same as the
Theorem given by 5 7(10) though shghily less general for we have now
excluded those values of z for whicharg = = (r — 2Rym, k= 1,2, ,[7/2)
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5.11. Asymptotic Expansions of ,F (z) for Large z

5.11.1. PRELIMINARY RESULTS
From 5.2(14), we have

T (2] =) = 12 Gl (=] ), M
oy (2| 2) = T8 Gl (e | | Z2), @

where there are now (g + 1) p,’s and p, = 1.In 5.11.2 we give not only
the dominant terms in the asymptotic expansion for ,F (z) when p < g,
but also the complete asymptotic expansion. These follow from 5.10(6-9)
and 5.9.3(8, 9), respectively. In 5.11.3 we present the complete asymptotic
expansion for F,(z) which follows from 5.9.3(3-7). The dominant
terms in this last instance may be found from 5.10(1, 10~13).

In the theorems referenced above, let us put

m=1, n=p andreplace ¢ by ¢--1, (3)
a,, = I — Oy, h - 1, 2,...,?,
bl = 0) bh = 1 ™ Ph-1>s h == 2: 3,"') q + l' (4)

The parameter o [see 5.7(1)] is now replaced by
B=gqg+1—p (5)

We suppose that none of the parameters , is a negative integer or zero
[condition (A)] and that no two of the «;’s differ by an integer or zero
[condition (B)]. The latter condition can be relaxed. See the remark
after (8).

The sum

pd
2, expl—imB(l — )] 44311(8) Ep qa(2e™™ || 1 — o) (6)
f=21

cquals the same sum with 7 replaced by —i. This readily follows from

the definition 5.7(7). With the aid of 5.9.2(1), (6) may be expressed
formally in the form

7
Lp.o(z) = Z L(p‘.)a z)’
tal
il (a) Moy — o)*

L(() ) =
ral?) Ipg — )

oy, 1 —
e+1Fp ( o1 +a —p,

I+0¢,-a:

S O

~
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or formally from 5 2(11) or 5 1(27) without the restriction on p, g, and 5,
1
Lodey = 624, (=17 ®

Observe that if two or more of the o,'s differ by an integer or zeto,
we cap define L,, ,(z) by a hmut process See the discusston surrounding
5 1(27-30)

Next we consider the sum

A'.’azﬂ‘ 1(R) Hy ol explen(g — p — 20)1) ©)

which 15 equal to the same sum with 1 replaced by —2 1n view of 5 9 2(2, 5)
and 57(13) See also the statement following 59 3(3) From 592(5),
and using (4), we have

Tl 1 — = expl2rmp)
i R I Isep(-de) <1, (10)

and from 59 2(6-12), we easily recover carrespanding results for
T2 (k) of (10) Let

’ s
&=L &=YFep(—tr), &H= )} expl—2mly+mll .
=l 1<kgp

)
&= ¥ exp (~2m N a.,). rzl,
1ehan S A _<h, -t
L=1 L= ) exp (-2!7r i p.,), rzl 12}
senar ncr, p
Then
): 1t = (£ (-rer) (g: rrm e )

and so with I 2,4(0) = 1,
T2 = ()G — 6 + 2( E IR £ AR R 3 R )

P =b~b D@ =bL- &+ &I 20)

D 8aB) = b~ & + 67 0a(2) — &0 Gl)

{15
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From 5.9.2(11, 12), we have

1 k
'2utk+1) = Fri Y (Sppa — Thya) ik ~1),

r=0

kd q
S, = Y exp(—2ina,r), T, =) exp(—2impyp), r=1, (16)
=1 i

22 = 3 expl—din{a; + o)) + 3 exp[—2in(p; + pi)]

j k=1 Jk=1

itk itk
P q .

— 3 Y exp[~2in{e; + pi)]- (17)
j=1 k=1

We return to (9). Now in our present notation,
AVTHy gz explin(g — p — 28)]) = K, o(z exp[—in(2k + 1)]),  (18)

(217)(1_8),2 " ©
K 2) = ~gur— [exp{Bz**}] 2" ¥ N8, N, =1,

r=0

» a
B=q+1~—p, Br=0EB-12+B -0, Bl‘:ZO‘ha Cl=ZP;.-
h=1

=1
(19)
The N,’s can be deduced from the developmentsin 5.11.5.1f g = p + 1,
see 5.11.5(19). For 7 = 1, from 5.7(15) and 5.11.5(1), we have
Ny =Cy;— By + (28)1 (B, — C)[B(B, + C)) + B, — C; — 2}
+ (248)71 (B — 1)(B — 11),

(20)
» s8-1 q $—1
By =3 ) aey, Co=3 3 pupr-
=2 t=1 =2 t=1

For convenience in the applications, we record

_ . " ) 2 2 {1-B) 72
Kpoleen) + Koofeee) = 2200 fexp(pat®? cos mfey] =

X 3. N,z="1% cos(ar[f — my — B sin nfB). (21)

r=0
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It 1s clear that the substitutions (4) transform (9) into
Z T2k} Ky o exp(—m(2k + 1)]) [e22}
which 1s equal to the same sum with 2 replaced by —z Notrce that the
expressions
A IaH, oz and AUIH, (e )
are equal and reduce to Ky 4(z) when (4) 15 used
5112 AsymproTic EXPANSION OF ,F(2) ¥or Larce 2, 0 <p g~ 1

The asymptotic expansions for ,F,(z) are divided 1nto two cases
Here we consider the case 0 < p < ¢ — 1, that 15, # > 2 The case
P =g listreatedin 5 11 3 We omit proof, as thts has been sufficiently
detarled 1 511 1 See thus last section for all necessary notation Some
further representations are grvenn 5114

Fo(y

~ e g ¥ I &, dxexpl-m(2k + 1)

+ Z 120 Ky frealint2e + 1D + L, (),
0<p<g—1 (D)
where | 5| — o0, 7 an arbitrary integer such that 0 < r < B,

laga) <2 —8 530
Sl -DeRCagr < —B D24+,
where 3, and 8, have the same meaning asin § [0(14), and I 2 (&) 15
I772,(k) with ¢ veplaced by —s 1€ we take 7 = [(8 - 112}, then the
Testricttons on arg 3 are
532 Cagr <8 of B=3
<

Jargs| <2 —8 o Bx3, 80, @
while 1f » = [B/2),

§—2n<Cagz<In2—8 o f=3,
fargzi<2—~8  of B#3 530 o
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If only the dominant terms are of interest, we get the following results

®p | . F(Pa) ~
pFo (P ) F(oz ) I\p q("‘),
0<p<g—1, [z]l—>oo, Jagz[<L<zs—5 §>0. (4
aﬂ v P(Pa) 1 -~ op—ir
o (2] ) ~ T7 28 Kolse™) + Kplzeto)
0<p<g—1, thatis, B =3
& —> 400, that is, argz = 0. (5)

The case B = 2 has many important applications. We record the
asymptotic expansion for this situation in full:

Ay

ﬂFD+l (

P -
"z) ~ I(’,()mp:;) {K,, paa(ze™) + I\D,z:+1(ze~m) + Ly pral2)},

z | - oo, largs | < 27 — 6, 8§ >0. (6)

Pp+1

To facilitate computations in (5), (6), see 5.11.1(21). For numerous
applications it is convenient to replace z by 2%/4 and write

. I ) .
oFrea (P:zx 4 ) ~ Ig(,::;) {Kp o327 + K, 5 oa([3ze72R)
+ L, 5a(z%4)],
| 21— o0, largz | < w — 39, $>0. (7
Also
3? I
oFou (pc:l )~ z(f(’”*i) Ky p1((38]°) + Ko pua([Boerr]?)

+ Ly pua([ise <))},
(200, §—Q+¢)a2<aga<@—72—8, e=x1, 5>0. (8)
The apparent discrepancy in (8) when |argz| < #/2 is a case of

Stoke’s phenomenon,
Let us write

ﬂ P+l([ “'] ) 2“7*1'?1/0 z dk»o y d() = 1’

41

={§+g ZPA =4+ B, — (. )

A=l
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Ve record below recursion formulas for the d;’s mn the cases p = 0, 1,
and 2 In this situation observe that

dy = 2N, (W)
and Ny 1s given by 511 5(19) for k = 1,2, 3

CAE! p=0 Up=v+l,
3 —
4= Gtk = an
See the comment following 5 11 3(5)

CSE2 p=1
Ak + ) dyey = 3R+ 2K(1 + €, ~ 3B,) + 4N) 4,
—(~2y — Ik —2p + 1 —2p)(k — 2y + 1 =200, 1,
12)
where B, , C,, and N, are defined by 5 11 1(19, 20) There ¢ = p + 1
apd £ =2
CASE3 p=2.
2k + 1) dyay = [SR + 23 + B, — 3G, — 105) + 4V} d,
— [48 — 6R(C; + dy) + 2424 + 12C, + Gy + 4G, — 1)
— 32720 -G +4C,-1) 426, 4G, BC, 1da
+(k-2y-2)(k Zy-20)(k~2p- 20,0k~ 2y~ 2} de_s»
3

where the natation 1s the same as 10 (12), § 11 1(20}, and C; = ppsp;
Next we vrte the complete asymptotic expansion for the case § = 3
We have

Frr((2 [ )~ 206 4 V) 4 Ll 131>, (1)

where
Ula) = K, pofse} + K,y pos(ze7™),
fsee 5 11 1(20)] and exther
Viz) = V=) = I 2A{1) K, yufze **),
o s
P@) = Vifa) = ' LoD K, pusfae’™),
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according as § — 372 Larges < 27 —dord — 2r Cargr < 372 — 9,
respectively, & > 0. The apparent discrepancy in (15) when
| arg =] < 37/2 is a case of Stoke’s phenomenon. It is readily shown that

[57-1 exp(—2in) — T2 exp(—2impy]

Vl(fo") — (2‘”) 5 { —3z 1/3} ave—diny
X }: (=) N,rs, (16)
When 8 = 4,
o - I'(p 3)
Faua (7 | =) ~ e AG) + B&) + Lypiala)
{z|—~ o0, larg 2| < 20 — 3§, § >0, 17
where

A(z) = K, piafzet™) + K, pialzei),
[see 5.11.1(21)] and

B(z) = PL;’M(I) Kp D+a(ze—3m) ]""1,;1+4(1) K})_p+3(ze8iﬂ)
exp{—4z14 cos 7)4} =
= e /4} =~ Z (=) Noz=71%,(z),

r=0

?+3

b(z) = z cos 2ma, — Y cos 2mp,

j=1 i=1

yi . P+3
— j Y. sin 270~ Y cos 2mp,

j=1 i=1

cos((wr/4) + 3wy + 421/ sin =/4)

sin((wr[4) -+ 37y + 4zV4sinmjd).  (18)

5.11.3. AsympTOTIC EXPANSION OF ,F,(2) FOR LARGE 2

o I .
T (77| —2) ~ FE Kploe®) + L (o),
fz]—>o00, 8—m2<ags<<3n2 -3, 5 >0. (1)
p (%] ) o L) i s
oo (37| =2) ~ T2 Ks™) + Ly (o),
[#] >0, 8-3m2<args<m2-§, §>0. (2)

We may also write

(%] P(P ) -
x:rp (P; l “‘) ~ "fv’(;% {I\n.v z) +Lp.n(:eltr)}v | — oo,

$-QR+9m2<ags<R—)n2—8, =41, §>0. (3
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If arg = { < ={2, the apparent discrepancy m (1), (2) and also 11 (3)
15 aga a case of Stoke’s phenomenan
e now put

K, ,{25) = e¥(22)" i axt dy=1 y=F(ua-p)=B-C. (4
i P=1

In the sequel, we giwe the recursion formulas for dy, for the cases p = |
and p =2

CSE? pmg=1

el —

d, = LP:__“M o)
Note that of py = 2y = 20 4 1, then (5) and 5 11 2(11) are the same
and the dy’s are d with the p p of
1,{2) Jsee 62 7(37))

CASE2 p=q=2
A+ 1) d = A2 — K2y + By — 1) + N} 4,
Bl it (R ol e Nt L PRI 3]
where Ny 1s given by § 11 1(20), with p = g = 2and f = 1 Hay = I,
o=+ v+ Ry = oy~ v+ 3, then d, 1s gven by 511 2(11)
5114 FurTHER REPRESENTATIONS OF ,F(z) FOR LARGE 2,0 € p < g — |

We now gwe some results which follow from the analysss of
w1, by, ) for lasgengnenn 745 a0d 746

This 18 d using the prnaiple Thus from
3 5(33-35) and 7 4 5(4),
@ —n, 04 A« Ed
(] =) = e el (T T |2, 0
o It 22y 220 22
Al )~ e +

X exp{fa¥® cos mjf + Xz~ cos wiff + O(z~*1)}

X cos{fz!® s wfB + my — Azl sin w[f 4 O(z-24))

+{8—2) exponentrally lower order terms,
B=q¢+1~px23 Izl lagsl<a—8§ >0 (2

Here y and ), are defined 1n 74 5(5) Also, y 1s given by 5 11 1(19) and
Xy 15 sumply N, of 5 11 1(20)
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Similarly, from 7.4.5(6), we have

YT - (A ey = N I'pg) i
sza (Pz "') - ;,1_1’2 n+2rq ( P - 71(71 + )\) ) I"(a,,) Lp.q(ze )
(2m) =82 (p,) 2

AR,y XP(Be + A + O}

+ (B — 1) exponentially lower order terms,
B=q+1—p =3 z|— oo, largz | <7 — 3§, 3>0,
c=+(—) if agz<(>)0, ()

and y and A are as in (2).
From 7.4.6(2, 4), we get

; O | _ ) I (Pzz+1) I (Pp+1) 2 —l 2
Fows (7 | =5) ~ 2B Lopula) + A explu™ + OG2)
X c0s{2z12 + my — wz V2 — w iz %2 - O(z~5/8)},
| 2| — o0, argz <7 — 8, 3 >0, 4)
%p o) ~ F(pp-i-l) i F(pﬂ-f-l) 2 S SRPI, | —2
oFons (17 | 3) ~ 5 Lapnleem) + 3R S expl—ag™ + 0(~2)

X cosh{2z1/2 + w212 — ) z~32 + O(x5/%)}

z|—o00, Jargz|[<Lnr—38, &§>0, € asin(3), (5)

where y, w; , w, , and w; are defined in 7.4.7(3). Also, v and w, = N, are
given by 5.11.1(19, 20), respectively, with § = 2.

Since the case p = 0 of (5) is of particular interest in connection with
Bessel functions, we develop that case further by recourse to the
differential equation approach employed in 7.4.1. Thus assume that the
differential equation satisfied by (Fy( ; 1 - v; —22/4) [see 5.1(1, 2)] has

a solution of the form

0

Kexp jcoz + 2, log zx — ),

m=2

eml™ i m
(m-—-1" (6)

where K and ¢, are constants. Put (6) into this differential equation.
Equate the coefficients of powers of 21 to zero and get the recursion
formulas
o +1 =0,
m+1

@ +1—me, +2 ) ctp =0.

=0

Q)
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The two roots of the charactenistic equation yield two different generally
divergent senes solutions of the differentral equation  Companison of
a lmear combination of the two possible solutions of the form (6) with
the known asymptotic expansion of J{(z) for large = then yields the
formula

M~ () exptaged cos g - 3~ 5
2l lag@i<a—~8 5>0 ®

where

A= F =2 "

;& - l3) (p‘ —S3p 4 412)
~lob ]1 o) I D ¢ oy

Bl =17 2 =5 z)m ©

- (=) (p—25) | (o — 114 + 1073)
=e i s #1020

(5u? — 153542 + 54703 — 375733) '
IS e TSR 0, e

Note that (8) 15 exact for » = +£ Also

A=A A=A
B~ = ~Bl5)  B.(3)= B 0

Asymptotic expansions for other Bessel functions follow from
627(5 7 10) Thus

Y(5) ~ (-—)”expm(z))sm kﬂ(,)A‘Lz‘ %l

=z

a9 ~ (2) g e+ [re -5~ 7))

[
Cs) ~ ("—_)l explA(e)) cos jB @-F-F af
lagzi <8 5>0
(e} = J{aheosa — b {s)sm 12

Ir calls for remark that 1f 715 held fixed 1 {8 11} one needs the additional
restriction | v | <C | z ) 1n order for the correction terms to remain small



5.11. ASYMPTOTIC EXPANSIONS OF ,F(z) FOR LARGE z 205

The forms (8), (11) are useful to get zeros of the functions. Inverting
the series B,(s) = w, we have

(e-1) (T —31) | (83p®—982u + 3779) o,
s =) = oS I g 1920z HOw™)
(13)

Thus, the jth positive zero of C,(z) occursat i, [(w/4)(4] + 2 — 1) —aj,
which corresponds to the McMahon expansions given in Watson (1945)
and Olver (1960).

Tor a further application of the above results, we have

Jo(@) + JUE) ~ 2 cos(mv[2)(2fn ) exp{A ()} cos{B,(E) — (=/4)},

J A — J(L) ~ —2sin(m[2)(2/=L) 2 exp{4,(0)} sin{B,() — (=/4)}, (14)
[{|—~oc0, Jargli<g<w—8 8>0.

Thus the jth positive zeros of the first and second functions in (14)
occur at ,[(7/4)(4j — 1)] and ,[(7/4)(4j + 1)], respectively. If v = §,
(14) gives information on the Airy functions A4,(—z) and Bj{—=z)
[see 6.2.8(4, 5)).

5.11.5. Recursion FormurLas ror COEFFICIENTS IN THE
EXPONENTIAL AsYMPTOTIC ExPaNsIONS FOR Gp7(2) AND ,F (=)

Here we develop recursion formulas for the coefficients ¢, , ;. , and N,
which enter into the expansions for ,g./(z), H,(3), and K (2),
respectively, defined by 2.11(28), 5.7(13), and 5. ll 1(19), respectively.

It is sufficient to develop the recursion formula for ¢; as the coefficients
M, and N, are simply related to ¢, . The relations are

o:,,),

p).
For the development of the recursion formula for ¢, we follow
E. M. Wright (1958). First, we notice from 2.11(28) that if

B*c, (1% qg-+1 l la” ) =N, =N, ( ,

1
zW,L—ﬂIL(p,q-r-llo | — ) = (— )"NL(P,

F(:)=Zpgq(k)zl’ 2y |zl <] if p=q+1, (2)
R0
then under the same conditions

F(z) = | P F(“;) (1 a,

15, T(p,) " 9 \py , g

3). 3
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Let K7 (3) stand for the formal refation

.
Ky = L iy £ 2520

Bandyaswn 511 ((19) Then
F~EJ{z} p<g—1, Vzl—> o, jagzi<n—3, 8§20 (5

Qbserve that if py = 1, (3) becomes 2 F, and (4) reduces to K, (2}
Clearly K3 5(z) enters \he asymptotic expansion of F(z) when p=¢
M pLg K,, (3) formally sausfies a nonhomogeneous differental
equation of order ¢ + 1, see 5 1(}2) So upon substituting (4) mto this
differential equation, we can discover 2 recursion formula to generate
the ¢’s This 1s the 1dea used by E M Wnght

Let
T =110+, U =TT +A
A
o =By =Byt =gy, N =Bu iyt l—pe O
5 (T~ B _ AT
TKV’?)‘-‘EW? — (U]

where 4 1s the forward difference operator with respect to £ and m (7),
£1s replaced by —# after differencing We also need to define U(—k),
which 1s grven by (7) with T replaced by U It may be shown that

LT ds—Mea,— 3 Uple—HKe, =0, ®
& 3
where ¢, 15 prven by 2 11(29), that ss,

a=alp q+l|ﬁhp) [¢]
In(8), ¢y = O fork < 0 In view of the sumple relations

Teal~—F) —~Uf—B) =0  Tf~k) ~ Upo(—4) = —Bk  (10)
B =¥ T~ Daa—3 Upssli ~Bar e (D)
z %

where the second sum s mif p < 3
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If the largest k for which ¢, is required is near to g, the coefficients
in (11) can be readily evaluated by computing T(t) for t = ¢ — 1,
g — 2,..., —k and then differencing these values up to (g — 1) times.
If % is large with respect to g, then

(=) g R — 1)) Toyy(0)
) (g ¥ P 1Y P (12)

Tosls — k) =

r=0

and so we need only to calculate T,(0) by differencing fors =0, 1,...,¢ + 1.
The formula analogous to (12) for U,_,_,(s — k) is obvious.

If % is small with respect to g, the above methods for the evaluation of
the coeflicients of ¢, in (11) are not very efficient. In this event
E. M. Wright proposes the following. From (6) and 2.9(13), we can write

b4 g+l
Uit = Z S(rv)()\) T, T(t) — Z S;G-H)(w) fatl-r, (13)
r=0 r=0
In particular,
Sén)(,\) = S‘(Joa-l)(w) =1,
» P
SPA) =Y A =8Y «+pBy+1—p} (14)

=l jel

SeHie) = Y w, = B zp, + (@ + (=B + By +1—p).

=0

Now

T(t— k) = f S S (<yhe (R PSR )

v=0

and so

T, .~k = Z Sia+1(gy) Z (—)he (9 + 1~ )(9 +1—r— v) Ble-e-n

o ot q+ 1 — $~r—op ?
(16)

U (— O S (yepe (PP =T =Y pl,

=B = E,,S”“’,,Zo‘ e (PN B, (17)

where B{?)(x) is defined in 2.8.
In certain situations, we can identify the coefficients Ny, fork=1,2,3
with coefficients in 5.11.4(3, 4). For example, if exp(A ~—1/ﬂ) is expandeci
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m the form 1 + A;z748 + O(z-¥#), and the exponenual portion of
5 114(3) 1s compared with 5 11 2(4) and 5 [1 (19), we find that

M=h asy

where Ay 15 gnen by 74 5(5) In a stmiar fashion, from S 11 4(4) and
the combination § 11 2(6) and § 11 121}, we deduce that

Nimwy M=ol o Ny=off-we w, g=p+h (9

where w, and o, are given in 7 4 6(3)

Reney (1956) and Van der Corput {1957, 1959) use essentially the
functional equation of the gamma function to defive a recursive formula
for the ¢,’s A more sophusticated solution to the same problem has been
given by Rincy (1958) and Norlund (1960) They show that the general
case p < g can be deduced from the p = g case, and that the parucuolar
case p = g can be solved by consrdenng the singular solution at z = 1
of the differential equation satisfied by

1o, 2L 8t atp
MFM( R R S)
PoPe

A recurston formula for the coefficrents 1n the expansion of [,g,(3)] *
has also been studted by Van der Corput (1957, 1959) and Riney (1959}



Chapter VI IDENTIFICATION OF THE ,Ff,
AND G-FUNCTIONS WITH THE SPECIAL
FUNCTIONS OF MATHEMATICAL PHYSICS

6.1. Introduction

In Chapters III-V, we have developed numerous representations for
the ,F, and its generalization, the G-function. A vast number of the
special functions of mathematical physics are particular cases of this
material. For instance, many properties of Bessel functions follow
from Chapter IV. To facilitate use of our work in the applications, we
identify the more important special functions with the ,F, and G
notation.

The exponential function ¢*, the Bessel function J(z), and the
sine integral Si{z) are examples of named functions. Named functions
are identified in terms of the  F, notation in 6.2. Here we also delineate
key properties of Bessel functions, Struve functions, and the important
special cases of the incomplete gamma function which are useful for the
applications and for our rational and Chebyshev approximations to
these functions. It often happens that one has a  F, and wishes to
identify it as a named function. These data are set forth in 6.3.

In 6.4, named functions are expressed in terms of the G-function,
while in 6.5 the G-function is expressed in terms of named functions.

6.2. Named Special Functions Expressed as ,F's

6.2.1. ELeMENTARY FUNCTIONS

&8 = (Fo(=). 1)

(1 +2)0 = Fo(—a; —z) = Fy(—a,b;8; —z), (z{<1. (2)

( +2)0 + (1 — =) = 2,F (—~a, 1 —a;1; 59, zl<l. (3)
(1422 — (1 —2) = daz ,Fy(} —aq,1 —a; 3; 3%, zl<l. (4)

209
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[+ 4 - P = Foa - L 20z, lsl<1 6]
A+ —sr =, Fla+ L2aaz), (zi<i 0]

3t _ (o 1y L (e
L -t (L) o

AR ST
s (e Padmef i Pt Mt 1m4 2

p<q o p=g+1 ad (zl<l ()

cosz = oFy(, 4. ~{4%) U]

sinz = zofy(, § —§2) (10

03 2az = ,F\(—a, a, },sin 2) {smz| <l (1)

sin2az = 2asmz i} + a4 —a, honts), (snz{ <l (12)

sescz = Fy(h 4, st 2), azf<l (13)

In(l +2) = 2,51, 1,2, —3}, {xl<<l (14)

In{(l +2)((1 — 2] = 225k 1L 4, &) fzl<l (15}
arcsnz =aFy(h 1,327, txl<<l (16}

actnz = x,A34, 1,1, —=%), tzl<1 (7}

See alsa 9 5(5-7) Equatious (3), @), (5), (14}, (16}, (17} ace also vald
for 2 = 1, and (1), (12), (13) are vabd for z = /2 1 2 = 110 (3), (4),
requite Ria) >0

a(e, e+t — it d) =5 (20, s <
B )= [ £ 41— 1 dt = D@ TYIe +-8),
.
B(a,b) L{a, b) = f’w’(x —aprde (18)
.
I(a,8) s essentually the tncomplete beta function

622 Tue Gavssian Hyrpercroverric FuncTion
See Chapter IIL
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6.2.3. LEGENDRE FUNCTIONS

Py(z) = [I(1 — wI7(= + Df(= — DI*

X oFy(—w v+ 131 — p; (1 — 2)[2), M
N eirnﬂllﬂr(’;, + ¥ + 1) PO T e | - A u/2
OMR) = 2P+ 3 7 e
B v+ D@t DR+ B, (@)

where the complex z-plane is cut along the real axis from —1 to 1.

Ppx) = (1 — p)I'[(1 + *)(( — x)]+2
X Fy(—v, v+ 151 — s (1 — x)(2), —~l<x<l. (3
0,4(x) = Bt H[e e uRQ #(x +i0) + emuEQu(x —i0),  —1<x<l. (4)

For references on Legendre functions, see Abramowitz and Stegun
(1964), Erdélyi et al. (1953, Vol. 1, Chapter 3), Hobson (1955), Robin
(1957), and Snow (1952).

6.2.4. ORTHOGONAL POLYNOMIALS
See Chapter VIII.

6.2.5. ConmpLETE ELLIPTIC INTEGRALS
zf2
K(&) =f (1 — B2sin? 012 df = 1n,Fy(3, 5 139, [R[<l. (1)
0

ri2
Ef) = [ (1~ Esin0pds = Fi(—~L E L), [FI<1. ()

For references on complete and incomplete elliptic integrals and related
topics, see Abramowitz and Stegun (1964), Byrd and Friedman (1954),
Cayley (1961), Erdélyi et al. (1953, Vol. 2), Milne-Thomson (1950),
Neville (1951), Oberhettinger and Magnus (1949), and Tricomi (1948).

0.2.6. ConFLUENT HYPERGEOMETRIC FUNCTIONS AND
WHITTAKER FUNCTIONS

In addition to the material given here, see Chapter IV, and in par-
ticular 4.9.

£

c

Pl =al iyl o
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The so-called Coulomb wave functions are essenttally confluent
hypergeometric functions Thus,
L+1—n
Futn, ) = Gy piese By (50177 2,
@

2 | TL + 1 a9
CL(n)=-’—(—ZL—+—”.*i

Inview of 4 4(12), Fy(n, p) 15 real 1f p, 7, and L are real In the applications
L 15 usually a posiuve integer ar zero

VAL 4 1 — 1) e 2t lete
Filn o) 4+ 1Geln e} = gy_’n%%

XYL+ |~ 0, 2L + 2. 2t5) @)

(L 41 — pyemmuiat

Filn ) +1Guln ) = Ty — )]

W, 10420} “@
For further materral on Coulomb wave functions, see Abramowrtz and
Stegun (1964) and Curtis (1964) We have followed the notatton of the
fermer

“The parabohc cyhnder function 1s defined by

D,(a) = 200 (1 — )2, 312, 2%2)
= 20 g »u.(#/l)

~ e [ B (i
I -v)/z
+ oy £ et 2

For further matersal on (5), see Erdely: et af (1953, Vol 2, Chapter §)
J € P Mller (1955), and Abramowitz and Stegun (1964)

627 BesseL Funcrions

Deﬁmtuzru, Connecting Relations, and Power Sertes

) = 7B i1 =) w
- _Gor = o i
) = o 1 R S = ¢ e, < argx <nf2

2
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=2
He) = G R,
1) = S F v 14 2 £22)
= [y + 1) 222221 M, (23).
Y (z) = (cscvm)[{cos v) J (=) — J_.(2))

w¥o(e) = [ (o 6]_v(~)]m’ (n[2) Yolz) = [6] (=)

Cz) = AI(=) + BY,(=2),
where 4 and B are independent of z.

K(3) = (m[2)(escvm)[I_(z) — 1(3)]
= m%e7H(23) Y} + v 1+ 203 22) = (7[25)12 W,,(22).

(4 + v 1 4 20 £2z).

y=0

2K,(2) =(—)"[61-v(z) _ 61..(::)] v Ky(®) = — [‘al—é(vﬁ] -0

ov y=n v=0
HOG) = J(&) + V), HOE) = J(s) — iY,(a).
K() = imiceonRHS-0/2(ggrenz),
~(B+egn[d <argz <3 —¢e) w4, e= +£1.
Y, (ze'mr) = g™y (2) o+ 2ifsin mym)(cot vm) [ (2),

tw(sin mym) I
sin v =

Kl (2’8""") — pmtm "K,,(Z) ),

where m is an integer or zero.
Yo(3) = @)y + In(=/2)] Ju(=)

. (-‘;/2)‘" ;’z:: (n — i!__ ! (_‘.:41)1\

G2 ¢ v WD) e+ k+ 1) =291 2
— ;( ye L )ksf(('%k;) tﬁ()](z)_

Ko(z) = ()"l + In(z/2)] 1,(=)

2 (12)(z/2)-" i’ (=) —k — 1)} (_Z_)L

ot k!

_(_)_ sy 5 LR+ 1) + 9 + b+ 1) - 29(1)]
(=12) go Yy (5 )
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3

(4)
()

(6)
™

(8)
9)

(10)

(11)
(12)

(13)

(14)

(15)
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Difference-Dyfferential Farmulas

Let I,(z) represent any of the Bessel funcuons of the first three
kinds or the modified Bessel functions With each 1,(2) we associate
two parameters g and b as outlined 1n the following tabulation

s a b

34 39 H () HE Gy 1 1
il H L
@t o2} + B3 ppfz) = (21) 1 (3) un
—aft (s + 81F (=) = 20z} 8y
2 (3) + vH () = b2lT, (2) a9
20 (2) — o1 (2) = —azl,, (2} @0
(& day (el (o)} = b o(a) @n
(72 dey{7 T (=)} = (—a)y =1, m(3) )

Bim(y = 2= F () (3] ey 3
=
[0+ 2D + (ab ~ )| W) =0 D =ddr @

1
3{=) = e Cihz))

then with 3 = 3{z) k = (z) and £ = f(z),
Y 4+ R2f R Gy - {sla - D+ 2af 2 {2
F{F s — (B k Yoz +f %)
{h Rz +f 2%
+ G FE Sy =0 (25)
Wronskians

Ve define
B2} o)} = u(z) v (2} — » () o(2) (26)
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Then

W{JA2), J-A5)} = — (2}mz) sin v,

W{J (=), Y(2)} = 2/mz,

W{HW(z), HP(z)} = —dilnz,
W{I(z), I.(2)} = — (2frz)sinvm,
Wil(z), K(2)} = —1/a.
Asymptotic Expansions

Hz) ~ (2" expli(e — b — 4] oFo (3 + v 3 — v ).

| | -—>c0, § ~nmLargs €27 — 3§, & >0.

HIP(z) ~ 2z expl—is — bom — 4m)] oFo (3 + b — v — =),

21z

| 5 | =00, 8 —2r Sargz L — 8, §>0.

JA%) = (2/=z)t2[A(z) cos 6 + B(z)sin 6],
Y, (=) = (2/=z)12[4(z) sin 8§ — B() cos 6],

6 =z — v — b,

A~ F (PR T i b

P Q1 3 bl — 5 5 __
B(S‘)N (4 sz)qFl (3 + :.’Vr% E’EV 2"‘3‘2":2 ‘3}"

o~
-~

e\p[— — e[} + v) in] 1
+ (2_,..)1/0 F ( +vt—v "Z):
3]0, 8 —2+ e <argz < (2 ~ )7 — 8,
>0, e= 1.

K\(z) ~ (7[2z)12 e== ,F, (‘ RIRE Bk *212)

fz]—c0, largs] <372 —8, §>0.

See 5.11.4(6~14) for some other asymptotic expansions.
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7)
(28)
(29)
(30)
€29)

(32)

33)
(34)

(35)

(36)

(37

(38)
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If v 15 half an odd integer, the hypergeometric series 1 (32)-(38)

terminate so that we may seplace asymptotic equality by equality and
onut the restrictions on asg

Products of Bessel Functions

rerke = e (A ),

()

F Y et Y WP By B 0

Jiz) = [T::j—T)]—i‘F‘(y +hr+ L2241, -3 (41)

L 1 =20 g 11— ) «“)

s = o (L) @)
F Y L R |

~% o132 @

Miscellaneous
) oo e a2 F o) 9

% [ — (2O 23 o0 5 - Sif2e) eos 2],
et 2

(46)
(226} | = ey iCu2z) cos 5 + $i2zyun 2}
-
ber(z) + sben(z) = J{aetr ) = e [ (ze~ter) 47
Ker,(z) + tkes(2) = expl—him) K {ze7H) = hnHD(zene)  (48)
On the left-hand side of (47), (48), the subscript 1s enutted whenv = 0
Bessel functions of order 1/3 are essentially Awy functions, see 628

For further matenal on Bessel functions, sec Watson (1945), Erdely:
etal (1953, Vol 2, Chapter 7), and Abramowitz and Stegun (1964)



6.2. NAMED SPECIAL FUNCTIONS EXPRESSED AS ,F,'s 217

6.2.8. Airy FuncTIONS

Let

£ = (§) 5°~ (1

Ai(z) = (1*3){I1s5(€) — Lia(€)} = m(3[3)% Kya(8)- @)

Bi(z) = (=/3)"*{I1/5(€) + Lal8)}- A3)

Ai(—=2) = (2*2[3)}{J1/5(6) + J1n()}- “
Bi(—2) = (3/3)""*{J1/(£) — Jussl€)}- )

AV(z) = — (33){_ais(§) — Ls(6)} = — (s3'1%7) Kppe().  (6)

Bi'(z) = 371%a{l_g15(€) + Lors(£)}- 7

Ai'(—z) = — (3/3{J-21s(§) — Jen(€)}- (8)
Bi'(—z) = 37%{J_os5(€) + Jors(é)}- ®

For a completc development of Airy functions and associated Airy
functions, see Luke (1962a).

6.2.9. LomMEL FUNCTIONS, STRUVE FUNCTIONS, AND
AssoCIATED BESSEL FUNCTIONS

Definitions, Connecting Relations, and Power Series

b +1

W) = S I E Ty D)

1 —z?
x’~((u—v+3),1(u+u+3) ) M
Susk®) = 5u0(3) + 24 — v + DI TR + v + D]}
X Asinf(p — ») 7f2] (=) — cos[(u —») m/2] V,(z)}. (2)

512y L
H() = 737 rop g - g, 324l —2)
= [=27(3),]7 s, .(5). (3
H,(z) — Y.(2) = [=2-'(1),] S,..(2). C)
. (3/2)l+1 ~2
Le) = rEm ez (3/2 324075

= exp[—4(v 4 1) ia] H, (zef"/?), (5)
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Equations (1) and {2) are Lommel functrons H,(2) 1s the Struve function
and L(z) 1s the modified Struve function

1 = 22 - 2 L) 0]
Eig) =~ “—*—%‘3‘31’ w2z, )
<4 Iv(k+i)(i:)n—l!»l
mE,(2) + Ho(2)} = Eﬂ “Feilom 6]

4 rm kBt
AEoe) 4 B = (- 3 Db ®

1{2) and E,{z) sre known as Anger-Weber fanctions

Difference-Differental Froperties

Both 5, (z) and S, ,(s) satsfy the following difference-differential
equations

Suulz) = S, (3) (€]

Supdg) =2 ~ (e + PP~ 8, () (i)

8548} + (642) 5, (3) = (5 + v — 1) Sug veal®) (12
S0 A8 — (4f2) S0 ) = (3 —» — 1) Sy @) (13)

(2003) S s(2) = (p + v — 1}'S, 5 (3}
ey =Sl (18

25, (2) = {1+ » ~ 1) S,y oyl2)
v =D SamE (19

D" + 2D + (3 — )] S, ) = 2%, D = djdz (16)
)+ Hle) = QB + it U7)

Hoale) ~ Roste) = 2K05) — s e 375 a8

SH() + vH(3) = 3, (2) )

SH(2) — VEL(s) = 7(3/2%‘%:—3/2)‘ —HLE) @

(D7 + 2D + 2 — ] Ha) = o an

THDTUE ¥
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Asymptotic Expansions

Sul5) ~ 2 (L (1 — p 4 9)2, (1 — p — »)[2; —4[3"),
| 2| ~—o00, targz | <7 —§, §>0. (22)

H(z) — V(o) ~ S Rt 172, 172 — v; —4)%),

7(1/2), *°
z | —o00, fargz | <7 —8, &§>0. (23)
. 2y o B . 452
I_(2) — L,(z) ~ m aFo(1, 1/2, 1/2 — v; 4/2%),
sl largz| <m2—35, 80, (24)

The functions S, ,(2) and those related to it are often called associated
Bessel functions. Two other associated Bessel functions are

) et L+ 3
II“"'(~)-(}L—V+1)([L+V+1)2F2(P-—‘V+2,’1,+v+2‘2z), (25)

INe—v+ DI +v+41)

W) = ] A
Husle) = e, 42) 20,
. K(@)siny — )
X [I"(") T T COS pmr ]’ (26)
which satisfy the differential equation
[£2D* + 5D — (32 -+ »%)] H,, () = esam. (27)
o e l, =g +v, —p—vi—=1
uv("') 2#+13F1( _1_# 23)’
|z | =00, Jarg 2| < 3w/2 — 3, 8 > 0. (28)

Further material on Lommel and Struve functions is given in the
references at the end of 6.2.7. Also, for the functions just named, and
for a complete treatment of the functions (25), (26), see Luke (1962a).

6.2.10. INTEGRALS OF BEsseL FUNCTIONS AND STRUVE FUNCTIONS

o Mptr+1) | ==
J Ot = e e ot Bt 13
Rp+v)>—1. (1)
[, HO) @t = @y etso-ne Ty e — v - 1) TG + v + 1]
+ (@ +v—1)sHN=)S, |, () — zH() S, (=)

R(p £v) > —1. (2)
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See 629(2) for 8, {2)
. ey Fuadvil
Lo = e e y+1.y+v+2’2"
Re+n>-1 0

J: SHmEy i = ;2;"““”"”# + Vz::g;“) M-yt
sl o 1 HIE) A, st
AHE ), (] (4 1) ),
Rla ) > —1 (]
See 629(26) for H, (z)
.
[rmon - oy
L+ (p+9)2 ‘2’
*eFlan b3 2 4 (e a2 2|5
Rl +v) > ’-2 &)
With

Joulz) = [Fa)] f: -0t I)d R@) >0, RE)>-—1, ()

2y
Sad2) = Todadl]
v+ 12 (v + 22 _
e G st 2] T @
I£v1s a positive integer r, then 7, (2) 15 the rth repeated ntegral of [,(z)
For the devclupmcm of the abave and many other results on mntegrals
of Bessel f; yp 1c fi and related topcs, see
Luke {1962a)

6211 ThE INcOVPLETE GaMMA FUNCTION AND
Revatep Fuvcrions

Incomplete Gamma Functions
.
= @ 1, . @
¥ 2} = Lt et dt = a0 Fy (a+l ‘z}
:a"z"g"ﬂ(nillz), R{a) >0 0]
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I'a,z) = fmls to-le=t dt = I'(a) — y(a, z) = e=Y(l — a; 1 — a; ?)

= z%" ‘1[’(1 a+1; z),
Sreal; [8]<mf2, R@)>0; |§]=mf2, 0<R@)<Il (2)
Here the path of integration lies in the branch of the cut plane determined
by {argx | < = and is the ray 7 exp(i8), 7 — o, except for an initial
finite path. If z 5= 0, the integral in (2) exists without the restriction on a.

If a—0, we get the exponential integral [see (8)] and in this event,
we exclude the origin in the path of integration.

I'(a, z) ~ 51677 ,Fy(1, 1; —1/3),
| 5| —00, jarg s | < 372 — e, e >0. 3)

Ci(a, &) + ¢ Si(e, 2) = I 1-sgrt dt = gm0 2(] — o ze7/Y),
R(a) < 1. 4)

~l-a
3z

=o' (;3( I—-_o:,)z} | ;f—) . Ry <l (5
f tesintdt = G = o= Fy (legz —a;")g

The incomplete gamma functions are special cases of confluent
hypergeometric functions. They may also be viewed as a special case
of an integral involving Bessel functions. For instance

J“ t~=costdt =
4]

—l
~

), R&<2 (©

vo,5) = @ [ 0EK 1) dt, R(a) >0, ™

For further material on the functions of this section, see Abramowitz
and Stegun (1964), Erdélyi et al. (1953, Vol. 2, Chapter 9), Luke (1962a),
and Nielsen (1965).

The Exponential Integral

we'd

E\(s) = —Ei(—z) = ( C tletdt =I(0,5) = (1 2). (8)

For the path of integration and other remarks, see (2) and the comments
following it.

e o
Ei(x) = — PV. [ 1letdt

M-

=PV. [ tletdt = -I(0,-x) = eY(1; 1; ), x>0. (9)

LR
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Er(z) = Ex(—2et) F (10)

o = e [P | BE) 1 gy

L £l —¢ Ydt = g (P2~ yfa, ) an
el o) o

gt a4 ) &

[[a = ety m o § 2D O as
-]
B+ rmn = [ o4 —ena an
B~y +1ng) = [ et~ e (19

Cosne and Sine Integrals
Cila) + 1(nf2 — Sifa)) = — (0, zet*) = L et ds 19
i) — Gt gy = ~ [ 1K~ cos e
~— @A () e
{ : UL o0s Ot = Uy @ — Fiof2, a2 4 1,42 — F9Y) (Y

=Um 247 —\Fife, 1, 12, —224)} 2]

=tmat ;1 — cosz,Fy ((a . l)/2f(ﬂ ron | ~#j4)
s 1
- (sza; i ((n +2)2,(a + 3)/2] ""’}4)} -
23
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1

jo tlsintdt = laxfg sin z , F, (( + D2, @+ 2)[2[ —3 /4
I COS T )]
T 1+a % ((a+2)/2 (a+3)2 ”M
(24)
. it g . 1/2 .
si(z) -+ 7/2 = Si(z) _for sintdt = 5 ,F, (3/2 3] = /4).
(25)
. o [2J45) inx o 2043
Ci(22) = (mz[2)17? |[—22 X zl.
‘( ) ( / ) [ o ];'—1/2 s A T p1/2 cos ]
(26)
i22) < (mzjoyre [ 21=) s 4 (%) in 5
Si(22) = (maf2)2 [ 222 sz g L_m sin 2]
27)
Ci(z) + £8i(5) ~ —z 13zt Fo(3/2, 1, 1; —4/2?)
+ (12, 1, 1; —4/57),
| 5] — o0, largs | S o —e, e >0. (28)

Error Functions

Ei() = [ edt = y(h 2 = B B ) = 2t B ). (@)

Brfe(s) = [ e dr = ot — Ef(s) = 3T(H ) = bl i 28). (30)

M

The notation erf(s) = (2/'/?) Etf(2) is often used.

Erfi(z) = —i Erf(iz) = j T et dr. (31)
Erfe(z) ~ (e-=125) oFo(1, 1/2; — 1/5%)
|z |— oo, largs | < 3a/4 — ¢, e >0. (32)
Erfi(z) ~ (e122) oFy(1, 1/2; 1/2%) — (im/2€[2),
x| — oo, — (3 4 26) w4 <args < (3 — 2¢) /4, e = +1. (33)
Oerfe(s) = 2012 Brfe(s),  iv erfe(s) = [ in~Y exfe(t) . (34)
' -~ e - ((+1)2]
el = sreE ) ( 2. |F )
st nf2 4+ 11 .
e (e 19 @
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42 exfe(z) m,&«n L2 a2+ 1 1)
jz{—>o Jargz| S 3Injd—¢ >0 (36)
o erfi(s) = —Zn—n%i—ﬁ(l 4+0@m ] zbounded msw  (7)
3% erfe(a)+ (afm)sn * esfe(z) — (In) Un T erfefs) = (38)
Fresnel Integrals
Cz) +15(2) — (2m) * =j'x Ut dr = eyt () Y
o
22yt e B (s T Y 9
C(a) +15(3) = (2m)  tem 4 2 — I} 2 3} (40)
=i 1
Cla) +1S(3) = (2amp * == 7, 4
@)+ o5 = i (g | ) + e @
e+ 156) = @iy 2 ) F g2
o) 156 = ety 2o Wy y ) ~sean il 4|
“
Cla) + 15(5) ~ (1 +1) 2 — (202) *#e4((28) 1451 3/4 54 —4i=")
+1Fl) 14 34 428} 1z fagzi<e  (43)
63 The ,Ff, Expressed as a Named Function
Funct on Location
Fiz = o
Fla D=
zi<i
FlE+v 24 6219 10) 627U 2) 628
Fla ¢ 2 Chapter IV 6261 2 5) 6273 4) 6211(1 13 14 29 35)
8103
Fobes ChapterI1l 62103 8 11 18) 623 625 §1(25)
WFala b 2) 4N 627032 33 37 38) 62413 32 1) 36)
‘F‘(b ‘S ) SI74W4D) 6291 3 5) 6210() 6215 6 2125
39 40)
b
a0 629(25) 621000 62 1K(16)
,F,("jl” 2 3133




6.4. NAMED FUNCTIONS iN TERMS OF THE G-FUNCTION

Function Location
3Fy (a’ :’c z) 6.2.9(28)
sFo(a, b, €; 2) 6.2.9(22~24), 6.2.11(28, 41)
oFslia, b cl2) 6.2.7(43, 44)
b
«Fs ( a;i :) 6.2.6(1), 6.2.7(39), 6.2.10(5, 7), 6.2.11(20), 10.4(29, 30)
¢, d, e
¥ b’ r d
. :(a ¢ z) 3.13.3(34, 46-49, 56, 57)
ef.g

a,b,c,d
i (*h0 )
e

6.2.7(36), 16.1(29)

6.4. Named Functions Expressed in Terms of the G-Function

13
qu(p ~

fiq

3% M (2)

= 220 (2m + 1) Tk + 3 — m) G132 (z

_ I'(pg) ~1p e l ~«a,
___I‘(ozp) Gp.0+1( ~ 0’1 __Pq)a
p<qg or p=g-+1 and |z} <] (1)
o) = Lo g (L albed
) Caitn (_“ ' a,,)’
pP<g or p=g+1 and |z|<L @)
at+i4k
a-}—m,a—m)

_ Qa2 TrQm + Ik + 3 —m)

2

k—a

a 1 ka 3  k
3ttt T3

GE | =
X Gaa 4 ta+m a+m+1 a—m a—m+1 ] )
2 2 o2 2
st~ M (2)
e AV VP (”I at+i—k
Fk4+34+m) 22\ latma— m)
_ (=22 2%al2m + 1)
Ik 41+ m)
a 1 ka 3 &k
. 2t37337373
X 2.4 _— . (4}
4 {at+m at+m+1 a—m a—m+1

2 ] 2 ) 2 ) 2
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22, (3)
= (MG~ m TG —k—m] 26 f¢]

TG R I h—m)

afk+1
ﬂ+§+mﬂ+¥—J

a1 3.k
a2 Srivhi+ies
XG il T latm a+m+1 a—m a~m-+1J" 2]
2" 2 ' ' 2
S, ()
—k
=] S0
— (appepraent
a1 _ha,3 Rk
Ny 237 32%i T, @
MV djatm a4mtl a—m a—-m+1
2 M 2
. _
A =G (|, A5 [l
e = R |t pa AR e poE ]y
et (22p I4z) = G} IF 4_*’*'““4‘) &)
gy —
—————m
Vs =~y e { 2 2
GRS b D
72
m=0tL42 . (0
e =2 Gty ek e (i)
2 K fz) = 22 G} (z;]“+”‘_y) )
Q2 Kfe) =% con v 613 22, j* * ) 03
[
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(2/2)% $,,(3) = 2 (1 + v + D21 T (1 — v + 1)[2]
g+ o1
=2 2
4 lptw+l oty o—v |’ (14)
2 2 2

x Gia

y+w4+1
52 Hi(z) = GM | Z- 2 (15)
me 1.3 4 v+ot+l wtr w—v *
3 T3 T3
(<2 S Ca
2 5usl®) = FA = TR T = 5 = )2
ptowtl
31 1 2> 2
<G b uit Chy e ] 09
I )
v4+owt1
e v _coswr a1 | 2° 2
”/2)[H() l("')] Gl-3 4 v+ow+l wodrv o—v

2 2 2

(17)
v+w+1
0a | 2% 2
2R ~ Ll = GRSl L L L,
2 22
(18)
v+ w41
z° 2

221 (8) —L(z)] = =" ra | =
(/){ I() Ll'( )] K COSWGI'S 4 y+w+] w —Yy w+v

2 2 2

Ci(e) + si(s) "
1 t 51
=-TE e (G ) e G, L) (20)
CE) + 8(3)
=10+ -G e (], L )
Y 49

+i 63 | 4| ; § @)
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M o (22) Y, o(—12)

22 7 YT0m + 1

=T

F+ETmyIg — k+m)

a a
- PR e
b v n+1 a+1

+mT—m2+1
Uy (2} B 4 of3)
= 2T2m 4y
B £y ey

ay | 2+l-k + 14k
et i o PP

Sem it 4t
a1, \(2)

o PR RN S
— v 6l Ta+l+ P

s n(12) Wy o(—13)

2e
BT £ ey e

P A+ T—%F =

a A
i PR R S
6. 1 +1 ‘1
ha a
T+mT>m 1ol
=] J(z)

w1
=nizgrzf e

@
! 277
* u+;+v @ ;+y @t

2
w41
EE SRR Ty PR

a+1
2

AND G.FUNCTIONS

a+1
T2,

—m

L, +Ia;—l

2

[e2)]

24
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=] (=) J(=) == Gi5 | #° . (28)

~
o Tl T (Y o M2o30l2 1,0 [ = o+ o—2r w wt+2
=] (=) [ (=) = =22 Gog (64 4 ' 4 4’ 4 ) (29)

w41
2
o Tl V fo o =172 20 f 2
2 ](2) Y(3) = —a Gt | = w 2+ o . (30)
I AR
=I(z) K(x)
w w—+ 1
o o o 2’ 2
(412 e a2
= (4= Gyg | 5 wtpt+v w-p+v wotp-v w-p-v
2 2 2 2

C2))

(ilw—}—Zv w+2 w w—ZV)
64 4 :

#](3) K(5) = w1312 Gl AEE e e

(32)
==K, (s) K,(3)
w @ 41
o 2 ’ 2
— -jﬂ,l/g ;x.o <2
2 G"“’ w+tpdv wo-pt+v wotp-v wo-p-v
2 ! 2 ’ 2 ’ 2
(33)
w-+1
HM(2) HY(z) = %72 cos vw G5 | 2° 2 (34)
w w w
PR Y
[ LR) J=) + Joulz) T3]
= ({2 cos(u + 3) =[2))"2}
w+1 w
o1 | Lo 2 2
x G2t | 52 2 . (35)

wotpty w-p-v w-pt+v wtp-v

2 ’ 2 ’ 2 ’ )
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=1J(2) J(2) — (=) J )
= — (2ol + )52y
@ w1
772
@t p-v 2]
2

if .
*Gii| 4 wtpty w-p-v @ ptv
2 2 F ’

SHSE B — HE() B

@ @
4 o 2"
qu" @ atpty w-ptv en
2 ’ 2
) — L@ (=)
__ sofp
s
@ o+l
2 2’ 2
=Gl e wtpty w poy w-ptv otp-r 9
e e e e e
(z=/20)[¢ Ht)(z) H(z) — e H(z) HY(z))
= 762008 pr — cos va)
w oe+)
t 272
x G|+ wlpdv o phr orp-y w—p ¥ %)
2 ’ 2 ’ 2 M 2
Mot z) HEVz) 4 desimHNz) HOVz)
= =75 *{cos um + cosvm)
wtl o
1 2 "2
x G wdptr w-ptv otp-v w-p-v “0
1 T 17 T T2

65. The G-Function Expressed as a Named Function

o) - § IR0, =50 B T0 + 20—
by £ T b~ B) T, T — 5

65l s
ATl
1 4By —
* Feuly 1 aferes).
x
or p=g¢ ad |z{<l )

p<q
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God' (" a") _ v I D@y — a)* Lo (b, — ay + 1) =7
b 2 TP T+ @y — @) Ta T — 8)
1+ by —ay | (=)
XqFr—1(1+a:,_a;'k z )’
g<p or g=p and z|l> 1 2
Gy (.. a,,) __ i (1 4+ 8, —a) s
" ba - HLQ F(l + bl - b)) nfgnﬂ F(a.r - bl)
145 —a o
X nFa—l (1 + bi _ b} (")p‘l ""') y
pr<gq or p=gq and zl<L 3)
Gri (=|7) = ™, T, — @y + 1) 2o
»e " ba ?=g F(] + a, — al) H;’;m-u P(al - .1)
1+ b —ay | (=)t
X ofpy (1 +a, — a* % ),
qg<p or qg=2p and |z >1. 4)
11, 11—k e+ k4 m)
iz (~ l Y +m ) — m) - I'2m +1) My m2)- ©)
Goz (x| a,b) = e ] (25172), (6)
1
Gl (;: I a -—-a) = 772 (cos ar) &3/ (z]2). (7)
G (3] a,b) = 23HatOK _ (5172), (8)
)) o -0 7>
G (= | b, p) = TETRS2). ©)
1 F/2peie
1 B 2 o > (o
Gz (" ‘b, —b) = o5 b Ro(5[2)- (10)
o a .
Gia (z b, c) = S eV e iemsa, joe)(R)- 1
o a
Gt (= p ) =TG—a+ ) Ic~at1)

X z!(b+c—l)e:mn,!(‘.!a—b-—c~1).g(b—c)(z)- (12)
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Gi(z1a+b2a a—b2 a+1/2) — 7 D) Lx)
ezt 3

Gil(elat+ 12 @ at b2 a—b) ;s_;ETZ'

X U@ a(x) ~ o) 11

PP )
Gillzlaa+ib b+ =xtet],, (459 a3
v 2
Glirla a0 Y - soe e Sl
~ I salxe™ §) Joaulxe 4}
x =21 {16}
GIlz10} o -n):m’;—;;’—

X e ) ] i)
£l ) ntee )

x = 2vg 4 )
Gi(z13 }a-—a—}a—-P= 2’;:";;'@(*)[/“(:) + Josal)]
X =200 (18)

Gl 0a § -2~} B Ahl Kuls)
X fros an Jox) — smaw Vyln)}

x =2 {19)
Gilel—t a—1} —a—1 0} = —4{mfz} 2 Rplx)

X (st w0 Jp#) 4 cos ma Vaull]
PR 0

Gilsla b+ 8 B~a) (00 2Kp 0 (x) frae (0

o= PRRA [73)]
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Gei(wla,a+3,b,b + 1) = dnatem Ky (4211). (22)

Gl (z]a,a -+ 4,0,2a — b) = 8r1/229K, g (xei™) Kypp_ay(vei7/4),

s = 2, (23)

ot (= ’162”‘;” *_“_‘nf’) — U, (22) Wy 0 (22). 24)
643 (] 104; k;n’-' :"f) — TG 4 m— K) TG — m — )

) % W ml(212) Wy o —2i). (25)

Gl (o] o ) = ™) Tala), e

613 (5], of ) = s, @

Gla (=], 5 = 3) = 7P H (2545, (28)

6t (s, ot AR AWCEEY ' (29)

633 (o] b, o) = gmm U5 — Ja) (30)

Gi8 (] g o2 L) =~ Vo) (31)

GE (= g o ) = 200 Ko, (32)

6t (x) 2, o) = mgmr U2 50) — 121 (33

Gt (o] 415 o) = Ty (52 — Ln@5®). (30

Gl (x| o 0 T3 J) = w25 — L,y 2002) (35)

G5 (s a L o) =2k @9

G (], 2 ) = e o) — o) (37)



F271 VU IDENTIFICATION QF THE f, AND G-FUNCTIONS

Gl (:ja b‘,‘_b) =202 —a — BT — &+ B)Spyy w227

3
el b h ) = ey HET AR t;;
See 6 4(20, 21) for G-functions With m = g == 3,7 = p ~= 1
L RS SN B WL Y Wer ) @)
(A" be o “:; IR WY RN
atfel, . 0 ) = e athen
— HE( I 2
atbl, M ) TR
X M_y (2227%) IV, o (22177) {43)
e *oj‘;"'b? ) = G w, ane) e @ay 4y
e H S - :’::i af) =R EA K@Y )

"
[ (” ! a, b,oi;, ~n) =7 sm:: sinab
X [e A, (207%) B2l
—eELEHEEA] @)
&0 )= =
8,6, b, ~a) ~ Fosnacos b
X [eimOH (1) B (217)

FESHIEHHEY) @D

et (s

6tifs] *o’_\;,f =t rg b —arg—s—a
X o o(2312) W, o (—2:2%%) “8)



Chapter VII ASYMPTOTIC EXPANSIONS
OF ,f, FOR LARGE PARAMETERS

7.1. Introduction

The behavior of ,F, for large values of the variable has been discussed
in 5.11. The behavior for large values of the parameters is much more
complicated. No complete theory is available, and there are many open
questions, especially as concerns uniform asymptotic expansions with
respect to the variable 3. Some results bearing on the subject of this
chapter have already been given in 3.5 and 4.8.

7.2. The ,F,

In the case of a large denominator parameter, we have

m x
2F1(a, b; c; z) — Z (a)k(b);.z + Rm+l ,

prmr (C)kk!
R,y = O@c ™), [ arg(l — z)l < @,
je}— oo, jarge| < — e >0, §))

where a, b, and x are fixed. For the proof, using 6.2.1(7, 8), 3.6(10),
and 3.6(1), we have

I(e)(a + m -+ 1)gm+?

Ry =— T(®)(c — b)(a)

1
X fo f , rm(] — 1)1 — ztu)me-m-l] — yym dt du,

valid for R(c — &) >0, R(b + m) > —1, and |arg(] — 3)| <= We
suppose m is sufficiently large so that the second inequality is true.
HOo<i<I, 0<u<], (I —atu)om1|  fo-m-1 o — R(a)
where 37 depends on  and is either the max or min of | I — atu|.
Let B = R(b) and y = R(c). Using 2.6(3) and 2.11(11), we find

" o fa Dmsa(Bhmaa | TB) || I(e) X
M+ 0 | T8 “ I"(c—c—b) Y 4 Oy ),

235
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| R 1 < |
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which proves {1) with { R,,,, | mstead of Ofc™') provided m 1
sufficiently large But (1) 1s 2lso vald for m = 1,2, , since each term
10 the series on the right-hand side of (1) behaves like | ., | Another
representation for the ,Fy for large denominator parameter 1s given by
(12){15) Sec also 4 8(8) with & = O

‘The case when 2 single numerator parameter of a ,F; 1s large s of
interest 'This, however, as well as the situation described by (1) are
specal cases of some results due to Watson (1918) who studsed the ,Fy
where two or more of the parameters become large To present some of
s findings, we first need some defimuons Let

s=coshf, f=p+wm p20 —r<y<r )]

These conditions determme ¢ umquely for a given 2 except when z 1s
real, 3 < 1 Tt s supposed that the arguments of 7, z — 1, and 2 + 1
are given their principal values (numerically not exceeding =), and
the special case when x — 1 13 real and negatve, 1t 1s supposed that
attains its value by a lumting process which then determines if arg(z — 1)
13 7 or —7 The values of arg z and arg{z + 1) are determined mn this
special case m the same manner Thus,

et = g (2t — I o)
We also put

U~ = (e — )7 [O]
where the upper (lower) sign 1s taken of /(z) > (<) 0 It 1s conveent
to define two sectors tn the complex A-plane as follows

Sector P jargd| <7 —58, §>0 )
SectarQ  ~dr —w,+S <agA<IT 4w —8, 8 >0,

ws = arc tan(vi), —w; = arctan{(y — m)lu}, v 0

wy = arctan{(v + #) g} —w, = arc tan{yfp) v <0

(6)

where arc tan 1s given its principal value, that 15, | arc tan x| < /2,
x real
Watson proves that
F (a+/\,1+a~p+a
: T+a—6422 1 a
LU+ a — b )
ST Fa—cFO~5+H

((z- ”m";‘f,“g' j: ) @ b-1n i/n(f)(i)y\ , a
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valid when | A | is large over sector P [see (5)] and

at+Ab—All—25 2640111 — b + M (e)(1 + e-€)e-a-d-12
c ] 2 ) PmV (e — b + )1 — e~€)e-L02

o (

x [ 3 f(~ B

A=0

+ explbintc — Dl 3 @OBX], (9)

k=0

valid when | A | is large over sector Q, see (6). In the latter formula, the
upper (lower) sign is taken if I(2) > (<) 0. fi(£) is defined as follows:

(1 — 2%, () = coefficient of T* in the expansion of

e )

— et 1+ e

= oo [ (1 el ™

in ascending powers of T, T sufficiently small. Clearly f,(¢) = 1 and

filé) = 3L + DMe* 4 Ne 2)(1 — e~%),
L=(a4b—2c+1f—a+b—3 M=—2a+b—1)a+b—2+1),
N=(@+b-1p+a—b+4 (10)

A generalization of (8) is given in 7.4.2(8). See also 8.2(33-40).

For a future application, it is convenient to record

~

np](a‘*‘/\,]-#a—c—f—/\ ~)

: l+a-~—b42X
_ 201 @ ~ b+ 2\)(mfA) e (@rNe(] — g=o)o-a-b-1r2[] 4 O(X-1)]
- (1 +a—c+X(c— b+ X1 + e—o)c-1/2 !
ex® = [2 — z 4+ 2(1 — )12}z, (1

which is readily deduced from (7) if there we replace = by (v — 2)/=.
Watson also proves that when A is large,

b |y Tt &
(D) ~ ey I e

if [1—-21)g1
if |1 —21}>1, AisinsectorQ, see (6), (12)

, Alsinsector P, see (5),
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and the coefficients fy(z) are defined by the relation
(Lt 1ttt -z ozt = ) F AGIY el (1)
=

Clearly hyfz) = 1 and by direct computation
Mz} =az+ }+1—~2) 14)
"Thus undes the stated conditions,

5 ([‘:Lb,\ { ) = 1 + (abafh) + (abe2¥)(a + Db + 1z — 2] + O
a3)
In the reference cited, Watson gives a complete set of formulas to
describe the asymptotic behavior of the oFy 1n the form

AT 1)

where e, , ¢y , & have the values 0, 41 The various cases are essentrally
of four types, as shown 1n the accompanymg tabulation In the sequel,
we consider only the type A and B sitnations

Case o o o Type
1 1 -1 [
2 1 ] a A
3 -1 —1 1)
4 ) 0 ]
5 [ 0 ~1
[ ] 1 0
1 Q -1 o
N 17
3 o 1 1 B ( )
9 ) -1 -
10 1 1 i
u -1 - 1
12 9 1 —1
13 o -1 ) l
14 I -1 1 5 ¢
15 1 —1 —t
16 1 1 ~1
17 -1 —1 1 2 p
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Case 1 is given by (8). If we employ Kummer's formulas 3.8 and the
analytic continuation formula in 3.9, together with the expansions (7),
(8), we can get asymptotic formulas for Cases 2 and 3 in (17). We now
illustrate this idea which is also applicable for the cases under types B,
C, and D. Consider Case 2 of (17). From 3.8(3),

B st =

Thus with an obvious change of notation, Case 2 stems from Case 1.
For an alternative approach, using 3.9(3), and 3.8(1, 7, 17), we have

I'(l + a — b)I(c — 1)etnte—1 l4+a—¢l1—b) = )
I(a)(c — b) 2—c z—1

, —c]_, I a—bI({ —ec AN
aaa++1l—b )_ngib)r(l)-i—(zlz—Z)*F l(ac l‘)

zl—c(l —_ z)c—a—l 2F1 (

= (s71e'7)% o F (

(19)
Now replace a, b, and ¢ by 1 4+ a— ¢+ A, 1 —b—2 and 2 —¢,
respectively. Then the ,F; on the left of (19) is of the form Case 2, while
the first and second ,F;’s on the right of (19) are of the form (7) and (8),
respectively, when a slight change of notation is made. Again Case 3
may be obtained from Case 2 in view of 3.8(2). There are other pos-
sibilities. To enumerate these, it is convenient to use the notation w; ;
defined in the introduction to the “Table of Solutions in the Degenerate
Case” which appears in 3.10. Thus (19) is the relation which connects
the solutions w, 5, ws,, and w, ;. In the sequel, we designate the
function w;, by the numerals ij for short, so that (19) connects the
functions 23, 51, and 11. Similarly 3.8(3) connects 11 and 13. We form
the following tabulation.

HypercroMETRIC FUNCTIONS OF TyPE A

Coefficients of A

&, '8 ey Functions Case

i -1
1 1
-1 -1
1 1
-1 —1 —

11, 12, 21, 22, 31, 32, 41, 42
13,23, 33,44
14, 24, 34,43
51, 52, 53, 54
61, 62, 63, 64

(20)

NNO OO
[ ] weom

The first three columns give the coefficients of A which define the
functions to be investigated [see (16)]. These are listed in the fourth
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column The simplest procedure is to use the continuation formulas
of 39 or the formulas of 3 8 as appropriate to express a function of
the fourth column 1n terms of the fundamental solutions 11 and 51, 2nd
then conpect 11 and 51 with {7) and (8), respectively In our allustration
of Case 2 we used functions 13 and 23, which are in the second row
of the above table Alternatively, we couid have used the relatron con-
necting 33, 11, and 51 which follows from 3 9(13)

HyeergEoMeTRc FUNCTIONS oF Type B

Coefficsents of A

3 r. o Functons Cuse
) o 1 a4z 4

o 0 -t 23 s

3 t [ 2 53,62 63 6

[ ~t [ S5t 54 61 64 Ty
0 1 1 1314 43 44 2

0 ~1 ~1 8213 M 9

1 1 1 1241 1Q
-1 -t ~1 an i

‘The use of this table 1s hke that for type A In the present instance the
fundamental solutions are 11 and 42 Since both are included 1n Case 4,
1t 1s sufficient to have the asymptotic expansion of only one of these
functions The expansion for 11 15 given by (12) To illustrate nuse of
this table we develop the asymptotic expansion for (Fy(e, 8 + A, ¢, z),
1e, Case 6 Suppose we use function 52 As we need the relation
between functions 52, 11, and 42, we employ the continuation formula
39(15) and use 3§(2,14,18) In this relation, which ss valid for
0 <argz < 2, replacea, b, andcby e — a,1 — a,and1 —a + b+ A,
respectively If z 1s replaced by =, and & 1s replaced by e *7, the
sesulting formula s also valid for 0 < argz < 27 Weget

T (@) p @b+ A}y TO+b—ciNle—0),, .

e J}( . l ——m {1 — 2}
c—al

X*F‘(1+b~a+xlr'

Il 48 —c+N)Ia)

HEYTIETED))

alta~c
x 1+a+b-c+4\f‘“r') @

+

frags
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This could also be derived from the formula connecting the functions 11,
33, and 62. Now combine (22) with (12) and use 2.11(11) to get

a, b+ A I(c) NG=6(1 — s YT -1
(%0 |5) = Famamgy Tt — )l — 2)=o= L + 0]
o+ T@)ze-i7)<{1 + 00,

[A\l— o, AinQ if [1~z[s1, AinP if [1—=z]=1 (23)

Note that (23) is exact when a = ¢ and {1 4+ O(1fA)] is replaced by
unity. Similarly from the formula connecting the functions 11, 43, and 51,
we get

5 (775 = rare g T@0a Tl + 00

+ I'(c — a)(Aze~i7)2=¢(1 — z)==*H[1 + O]}, (24)

valid under the same conditions as for (23). Equation (24) may also be
found from (22) in view of 3.8(3).

For a final example, we consider Case 5 of (21). Here it is convenient
to consider the formula connecting 11, 22, and 31, see 3.10(5) and
3.9(1, 6, 9) with ¢ replaced by ¢ — A. Thus,

F(a,b ~)_~F(a+l—c+/\)l"(b+1—c+)\)
il —al” *P(a+b+1-c+/\)1‘(1—c+)«)

x|z 1(a+b+l—~c+)\‘1

_mlla+ b+ 1 —c Xt~ z)c*“*""‘
a2 — ¢ + A) sin (A — ¢)
l1—~a1—0b

erl( 2—c+A ~)]’

A—c£0,41,42, ..., arg(l — 2)f < 7. (25)

It is convenient to take A large and positive. Using (12) and 2.11(11),
we have

ab |\ _ _,‘_'h ) mEUz)(] — 2)Pcz
A5 =1 + OO — FaTGy s -0 =901 = 2

+b—1 — 2¢) — - —B)x
X;1+(0*~ )(a+b+2 1;\) 2ab 4 2(1 — a)(1 b)”—}—O(A—?),

A—c#0,1,2,.., lagl—3)|<m  (26)
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Now {z/{} —3z) <1 if R(z) <} so that
F (09 =1~ @ + 0oy @n

untformly tn any finute subreg«m of R{z) < } If z = %, (26) shows that

) o @

A2 =1 -5 o~ B s =5

(@tb—i)Ne+b+2—2)~2ab+(1—a)fl -8
n

+ O(-%,
A—c#0,1,2, 28
Percon (1915-1918) also studicd the ,F, for large parameters and has
proved that
ab (a)(B)az" e +b—c+7)
A4 E,, Cont t T <c T rjsnre =7

x i

ot o e 5 Lol B

ey i
£ 4o, r—c;—‘O.l.Z., lamg(l — )l <= {29)
Thss completes our of f of types 4 and B The

functions of types C and D do not scem to occur m the applications
So we dispense wath further comments and merely refer the reader to
Watson (1918) See also Perron {1915-1918)

7.3 Some Generahzations of the ;F, Formulas
Knottnerus (1960) has shown that for z fixed, r sufficrently large and
posturve,
R A e T A -
A A S i o Bl =L n+or™)
S<hsp Gap(l -2 <, W]

where 1, 15 the nth term 1 the ,,F, senes expansion From 7 2(12) and
3 8(2), for 7 sufficrently large and positive,

a+7.b'+v|z)

R L e

Za..z' 2Kk Jarg(l — 2l <, @
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where the &, , quantities depend only on @, b, and ¢, and more generally,
Knottnerus shows that

Apy + 7
oesP

z) = (1 —2)° [1 + (dy=fj2r) + i (dufr™) + O(r—"‘l)],
k=2

b, +r
P P+l ., .2
o= b— Y a-—r d ={c+7rP— 3 a+ 3 b
j=1 3=1 jet i=1
k
d=Y B, 2<k<m |ag(l—z)|<m )

8=l

Here the B, , quantities depend only on the parameters a, and b, .
We sketch the proof of (3) which is by induction. If p = 1, (3) and (2)
are the same. Assume (3) is true for some integer p > 1. In (3) replace z
by zt, multiply both sides by 4+7-}(1 — )*=%-1, and integrate with the
ald of 3.6(10} and use (Z). It readily foliows that (3} holds for p + I
instead of p under the stated conditions, provided further that
R(b — a) > 0. This last condition may be relaxed. For this and other
details see the reference cited.

Another formula of interest is that for all z, = fixed, and r sufficiently
large and paositive,

G-l s Fumsor] o
P &
=2 —b), fi=Yns, 2<k<y, @)

i=1 seal

where ;. . depends only on the parameters a; and b, . If p = 1, (4)
follows from 4.4(12). Proof of (4) by induction is much like that for (3)
whe'r.c use is made of 4.2(1). Also for z fixed and 7 sufficiently large and
positive,

; a, 1

n-2

z) =1+ z 1 + O(f(7"")"), 0< p<q
k=0

. ((1,, -+ r)k+lzk+l

= B+ e T T ()

n-o

where 3525 is nil if # = 1. Both (4) and (5) have been given by
Knottnerus (1960).
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In {4) replace » by z/t mulnply both s des by e't ® 7 and integrate
with the aid of 3 6(19) Then

Forly, 281 a9

+ F B+r+1 3+007) (6

hiz
B+

valud for alt » 3 fixed  suffiently latge and postive Thus process may
be tterated Note that each ,F, in (6} 1s related to a Bessel function see
44(6)

‘The snverse Laplace transform 1s an excellent techmque to ger
further formulas Thus starting from (3} we can show that for all 2
o fixed and r sufficiently large and positive

f . 2 40+ 1 28)
. F”(zurairb e ’[H—"—;‘(;—jm—Jro(rz)]
Y]

52 5
8 Ya Yb
= 1
For the proof use (3) with = replaced by /¢t Muluply both sides by
et 212 and apply 36(19) with ¢ > | 7| so that the restrictton on
arg(s/1) 1s falfilied on the path of integrat on Then (7) readily foltows
from 4 8{16) In a sumilar fashion we have from (5) that for all = z fixed
and r sufficiently large and positive

atr [
'F“(zwa:w h,+rt")"+§5'2+0("**“) 0<p<y

" e 2t !

N 7 T8 A R, ®
Bt @ AAF DR D

Next of 7 ss suffic ently lorge and posnve z fixed % 2 0 x 1
jarg(l —2) <7 then

a4t ey
”F’“‘(Zr+)t+1b,+rlz)
2 TRr4 A+ Dmrple oo 4 o)1l 4 O]
TA+AX~ 84 +rjz oI evyp =212

21

e 2 s+20 HY 6 Ta 3T ©)
: :
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To derive (9), use 3.6(10), (3), and 3.6(1). Thus,

Pa+rlA+41—a-tr) F (a,,ﬂ—}—r,a-{—r
T2r4+A+1) PPy LA+ 1,6, 41

.

1 a4 -7
pa— tu—:H-r I -t A1 F p+1
fo ( ) P+l p( b, + r

zt) dt

1 dyzt d.
a—14r1 Amx ot \~O=r 1 L2 e
~ J‘ot +1(] — p)A-etr(1 — 2t) (1 -+ o + 2 -+ ) dt,

D+2Fp+1(za,+1+r,o:+r 3’)
a+rb+r) dizle +7) - (u+l+r,0+r

.

r+A+1,b,+7

N"’Fl(2r+A+l ”)+2r(zr+A+1)-1 2+ A+2
o A7) a+1l+rd+r|

tam P (e |9

Brotla +r+ 1) 'a'+2+r,r9+rf )i’*'

(2r +X+2) “( 2r +2 43 :

Now employ 7.2(11) to get (9).
Generalization of the results 7.2(25-29) are also of interest. We prove
that for & fixed and r sufficiently large and positive,

-

aD
c—r1,b,

A m ((11,),,2" .
) = L = A 0

r-c-7‘-_0,],2,...; I’<l]+1 or p=q+2 and R(z)<§, (10)

PF(H-I (

and

A aﬂ
Fose (c —rd+rb,

»

— < (ap)," —om—s
z) = Eo @ = (d + NGt T O,

r—c#0,1,2,.; p<gF+2o0rp=g+3and larg(l —2)] <= (11)

For the proof, we start with 7.2(29). Replace » by 2¢, multiply by
1 — £)*- and use 3.6(1, 10) and 3.8(2). Then we can write

a, b, « A N
srz(C—T,(x+B ”)—'Um'*‘llvn_*_n]m‘%“xm,

—_ < ((1)"(17),,((!),,2"
U = ngo (e — 7‘),,(& + ,8),,71! ’

;T porsr o
Y = g 0 e
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W, =

Ala + p(n —c -7 + l)( z )‘ o
T@l(a FB—c+r+1l) M-z

3 , l—a—b+
XE.."‘“”)"‘F‘(ﬁ “:fi;:r) RPSARE ]

A« + ) (¢ at

X = e o
nf@+b—ctr) & (1 — )l ~8),

= @I e+ smae—7) " @EFT—a—b—na’

)1 m(] ~ 2P N1 — ztyredglm, 2} dt,

where f(m, z) and g{m, z) are bounded for all 7 unsformly 1n z, = fixed,
larg(l '~ 2) < Clearly Vg = 01 HR() < } 121 = 2 <)
and IV, 1 subd to ¥, In the d of X,, , replace ¢ by
(1 — &)1 —- uz) Then

_ AL+ B — gyt s

*n TR

z )1 e
1 — 5

X

{1 — ayeergs m le~u)) .

“(TT,)»W..E O

and so X,, s also subdomnant to ¥,, This proves (10) for p =3
and ¢ = 1, provided R{a) >0, R(8) >0 These condittons may be
relaxed by appropeiate use of laop wntegrals given 1n 36 Equation (10)
follaws by induction for general p == g + 2 by use of the beta transform
Restrictions Iike R(a) > 0, R(B) > 0 may be removed 1n another way,
for consider

2 ba—m U fahiOule
El el P e i

@n{Bfs — M)
(6 =Pl + B — m)pm?

at+mbtmal
X o (c‘7+m atBlbm %)
where m 13 2 posstive integer such that 0 < R(a) <m,0 < Rla + ) <m
Now (10} 1s vahid for the above ,F, and so also for the F, For the case
? < g+ 1, (10} 1s readily proved using the taverse Laplace transform
techmque For example, in (10) replace z by 3/f, multiply by e't¢ and
use 3 6(19) In the latter take ¢ > | 2z | so that on the path of ntegration
R(z{t) < } Then (10) readuly follows for p = g + | provided R(8) > 0
“T'ros van ‘oe retaved s0'ong as B 1s not a negative miteger or zero vy the

+
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same argument used above to remove restrictions on the parameters
incurred by use of the beta transform. Repeated use of 3.6(19) leads to
the proof of (10) forp < ¢ 4 1.

Next we turn to the proof of (11). We proceed as in the proof of (10)
but let B =d — a4+ 7. We then find that ¥V, = O(r-*m-1), From
7.2(11), it follows that W,, = O(e~""), € as in (9), |e™| <1 for
| arg(l — z)| < w. Thus W,, is subdominant to V,, . Since g(m, zt) is
bounded, it is straightforward to show, with the aid of 3.6(1) and 7.2(11),
that X,, = O(e~"*). This proves (11) for p = 3 and g = 0. Proof of (11)
for general p and g as stated is very much like that for (10) and we
dispense with further details.

7.4. Extended Jacobi Polynomials

7.4.1. PRELIMINARY RESULTS

Here we are concerned with the behavior of

Fo(3) = ppoF

p+2% @

(——n, n 4+ A oy,
Pq

J M

for large n. The subsequent developments follow closely the work of
Fields and Luke (1963) and Fields (1965b).

Ifp = 0, g = 1, the asymptotic expansion for F,(2) for large n follows
from 7.2(8). In this special case, F,(z) is essentially the Jacobi polynomial,
see 8.2(46), if n is a positive integer. If ¢ = p + 1, we call F,(2) a
generalized Jacobi polynomial, and in general we call F, (z) the extended
Jacobi polynomial,

In our work we need not insist that # be a positive integer unless
g <p + 1, for otherwise (1) is a divergent series for all z, 2 5= 0. Thus
unless ¢ < p - 1 or unless stated otherwise, we suppose that z is a
large complex parameter. We also suppose that none of the p,’s,
I = 1,2,..., ¢, is a negative integer or zero.

From 5.1(2),
[5(6 + po ~ 1) + N33 + o) — 38(5 + NS + e )IFu() = O,
N =ann4d), B=g+1-—p, )

which is of order M = max(p + 2, ¢ + 1).
For our later work, we need to consider a function of the form

Glz) = A exp zN f A dt%, 3)
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where 4 15 2 constant Where no confusion wall result, we write
AN, ) =~ [0}

+ 1 defined later by {6)
By mduction on &, it can be shown that with G = G(2),

63 EE v s (B nes [ s 43 () o]
sl o ]
+ N [(;) ST ('6‘) 2 430 4 20}
+ 105 (5} -rrmpen 1105 () s + B )

where 707 15 the mth dervative of = with respect to 2, and H,_¢(N)
15 a polynomual i N of degree (k — 5) whose coeflicients depend on
=01, k&

Assume that

N =3O o
N 1) E NE Eﬂ N [OF
With the aid of 29(11-13), {2) can be expressed in terms of the
differenttal operator D If we assume that F,(z) 1s 2 function of the form
G(z) as gnen by (3), and employ (5), formal substitution of these
developments in {2) gwes 3 power senes in N equal to zero Then, 1f 7,
1s chosen so that all coefficients of powers of N are zero, and 7, = 0,
a generally divergent series (6) 1s obtamed With the help of this sertes
and (3}, formal soluttons of {2} are obtatned which serve as asymptatic
representations of cestamn solutions of (2) in approprate regions of the
z-plane ‘The equation for 7 1s called the charactenistic equation of the
differential equation, and 1ts behavior changes radically as g = p + 1
(Case 1}, g < p (Case 2), or g > p + 2 (Case 3)

742 Case 1, g=p+1
Here £ = 2, and we take
Nt = n(n + 1) 1t

Stnce nfinaty 1s 2 regular smgular pornt of 74 [(2), F,(s) can be gwen
23 a linear combination of solutions around mfiniry of 74 1(2) Replacing
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the solutions around infinity by their asymptotic representations for
large », we arrive at an asymptotic representation for F,(z), for large z.

A fundamental set of solutions for Case 1 of 7.4.1(2) contains
M = p + 2 functions. There are p formal, algebraic, descending series
solutions of 7.4.1(2) of the form

(ab)il

(PD+1)—<:‘

g(m).’)’,.](,ﬁ) =

piz =
oy 1 4oy —pyyy

1
Xp+_ p+1(1+at+ﬂ;1+at-”-—'\)1+at—a: —) (2)

~
~

where t = 1, 2,..., p and an asterisk means to delete the term when
the subscripts ¢ and p coincide. Observe that (2) and S5.11.1(7)
differ only by a function independent of =z if in the latter we replace
p and g by p + 2 and p -+ I, respectively, and set o, equal to —n and
n+Afor i = p -+ 1 and p + 2, respectively. Note that (2) and the
functions in 5.1(27) are also closely related. For [z { > 1, the series
defining .2’;,“;’2 p+1(5) converge and are valid solutions of 7.4.1(2). Since
enters into two denominator parameters of the ,,,F ., functions of (2),
!.l’;,“jr)g_pﬂ(z) may be considered as essentially an asymptotic expansion
for large n of a valid solution of 7.4.1(2). Then for 0 < |z | < 1, these
same functions also serve as asymptotic expansions for large # to valid
solutions of 7.4.1(2), see Erdélyi (1956) and the references given there,
The & :ffz‘,,ﬂ(z)’s then correspond to the p identically vanishing roots
of the equation for 7, see 7.4.1(6). They are linearly independent if
no two of the o,’s differ by an integer or zero. However, as previously
noted, we can always get linearly independent solutions by taking
limiting forms, see 5.1(27-30).

The lead terms of the exponential asymptotic expansions of the
remaining M — p = 2 solutions of the fundamental set of solutions are
computed by the formal procedure described above in the discussion
surrounding 7.4.1(3-6), and are denoted by J£¢(3), j=1,2. Here
A" (=) corresponds to the characteristic root 79 = 1[z(1 — 2)1/?], and
AP(2) is H"PY(x) with 7 replaced by —i7. We may now write

by
Fo(s) ~ Y. AZL80 (5) + Ayt D(8) + 4,00 (), 3)

{m]

where the A/s, t = 1,2,...,p + 2, are connecting constants independent
of = but dependent on n. We next determine the lead terms of the
asymptotic expansions of the A,s for n— o, By the confluence
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prmaple fsee 3 5(34)], f (2| <ia{n + N,

snF () = o (0 R 2
=Fou {7 }-2) ©

Thus, if 1n (3), # 1s replaced by z/n(n + A) while 0 <€ | 2 ) < nfn + X),
then the 4,'s can be found for large # by comparnson wath the asymptone
representation of Fpu®p s Ppes » —3) for large z, see S112(1) We
find that

n+Ae = ”
R E S e R e ML AR
Apy ~ r(« )P(i) WL et) s exp }2 ia, + ﬂ:,]h-’z ]

and Ap.y 15 Ay, with 1 seplaced by —r In 743 we will show by
Datboux’s method that

P =0, =1, t=12 ,p
4 7 2 »
by=by=by=b =0 a=a=0
and g, has the value gaven n (9) Thus,

—n,n + A a, {n+ 0~ 4
N AR P Ik ,, T Il

JEACHE R -
+ oD )T(i) Avofsin 8(2][cos 62] 2

x exp{N~p,(8) + 25 + O
X cos{A + 7y + N-'g(6)
& N%8) -+ OV},
fagzi<o—~e Jagl =3 <w—s >0, 8
where
csf=1—2r or =z=sm?62

N2 =aln +A), y =@y +2B, - 2G),
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) p+1
B1=zat) Cl=zply
t=1 t=1
p s—1 P+l s—1
B, = z Z oy, C'z = Z Z PsPts
§=2 {ml §=2 t=1
» r—1s-1 p+1 r—1 s—1
By, = Z Z 2 OOy Cy = Z Z Z prPsPt, ©iC
r=3 $w=l t=l r=3 s=2 {=1

@1(0) = (111 + po) cot(6/2) — 2(pty + po + p5) cot § — p,6/2,
po(0) = pafsec(6/2)]* + pslesc(6/2)F%,
@a0) = e + 17 + s + po] cOt*(0/2) + [pg + 119 — pe] cot(/2)
— §lpe + pg + pg + po + pyo) cO 6
— 2[p; + 2pg + 3pg + 4pso] coOt 6 + pfy2,
ay = =16 + (2)7MC, — B, + (2)74(B, — C)(B, + C; — 1)}
+ (12)73(B, + Cy) — 2(By* + B,C, + Cy¥) — 1B, — Gy)
+ (2){By(B, — 1) + Co(I — Cy) + C3 — By},
po= —X4,
pe = 2y NC, — B)2B, +A— 1)+ B, — Cy + 1/4,
pa = (4B, — C))3B, + C; - 2) 4+ C, — B, — 3/16,
ty = (16) 2y + 2 — D2y + ) = —(4) Ny + 112 + pa)s
ps = (16)1(C, — B,)(8B, — 8B.2 + 11B, + C; — 2)
+ (4)7C, — By)(2B; — 3) — (2)7(C; — By) + 3/64,
pe = —AY/64,
#y; = (4)71(B, — C,)[4B; + 10B, — 8B,B, + 1B, + 4B;3 — 10B,®
+ 2AB, + 2AB; — 2AB)® — XBy[2 — N4 -+ X%J4 4 A2 — 1/2]
+ (4) (B, — C,)[4B, — 4B,*> + 10B, + 2B, — 22+ 232 —1T]
+{(2)7Y2B, — A — 5By — C3) + Cy — By + 3%/32 — 1/16,
1o = (64)Y(B, — C))[C® + 5B,C® -+ 35B,*Cy; — 105B® +- 236B,2
+ 160B,B; — 24B,C, — 8C,C, — 40B,C, — 4C;* — 192B, — 64B,
~ 291B,/2 — Cyf2 + 9] + (8)1(B, — Cy)[2C, — 10B, + 6C,
— 30B, — 7B,C, + 15B, + 73/4]
+ 2y UB; — C;)(C, — 3B, + 6) + B, — C, + 63/1024,
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Ziey 4 pa = o = (G378, — CI2B, — 8B, — 88 AN + 200 - 1]
+1(8) By — C]A — 0B, — 344 < 2316}
+ B -G -8, - G)
+ @B, — G - O
+ (B — C)(B, — G4
+ (32) 4N — 1)(B, — C;) + 25XY128 — 471024,
a4 pa F By gt o = —(E)Qy A3y A= DRy + )2y 2 4-2)
2y 3 — B
st et @) 2y + A2y +2 - 1),
BeF it s e = —(64) M2y +2+ 22y +3)
X2y +A-2y+a-3),
#3 Dty Bty F Bz == Mpsg S gy + e+ 41y + 10)
= (g + 126 ~ 1410) — 3pe ©)
The coeffictent a, as given by Fields (1965b) deletes the factor (B, — Cy)
from the (12)-1{ } term
‘The restrictions on arg 2 1 (8) anse since the real 2xs 1s the Stokes
lipe for JF (o, , ppuy, —2)2nd the confluence on F,(z) effectively moves
the singulanity at unity of F () out to infimty along the positive real axts
By mduction, 1t can be shown that with the exception of 7y, only odd
powers of N appear inside the cosine term of (8) with curly brackets,
while only even powers of V appear in the exponentral term
Representations valid along the negatiie real avs and posttise real
aus to the mght of umty can be similarly constructed The connecting
constants 1 thts instance are determuned from (8) by comparng the

terms w those lapping regions where both representations
are 1alid Hence
(22
T
+ Je e coshier) >

% esptN-giftn) + af + O(N4)}
X cosh{NE — 1V Tpy(f1) — 1 V= (81) + O(N9)},
coshé=1+2z jags,<w—¢ >0,
$=+(—) of agz<(>P (i
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—n, 1+ A, o

P41

(n + A)—, () 5
") Z (o + 1), — mz.pﬂ(“)

t=1

,,+21‘ P+l (

+ (- el feosh(nf2)sinh(n/2)] >
X exp{N=*(gy(m + 7i) + a5] + O(N~")}
x cosh{Nn — iN“gy(7 + ni) + py7/2]
— iN=[y(m + 7i) — pg(2] + O(N-®),

coshyp =22 — 1, Jarg{z — 1) <7 —¢ €>0. (1)

Note that in the development of (8), we could only infer the value of
a, upon appeal to Darboux’s method (see 7.4.3) which postulates that
F,(2) is a polynomial. However, in some recent work Fields (1968) has
shown that the results of the Darboux analysis remain valid for n not
an integer. It should also be pointed out that the expansions (8)—(11)
are not uniform in z. The work of Fields mentioned above contains
uniform expansions of F,(z) for 0 < & < 1. In particular, it is shown
that the polynomials have a uniform algebraic rate of growth when
0 <5< 1. Also it turns out that (8) is valid for 0 <2 <1 and A
bounded so long as N sin § — oo, and the first and second O-symbols
in (8) are replaced by O((IV sin 6)~%) and O((V sin 6)~°), respectively.

The representations (8)-(11) are essentially generalizations of 7.2(8)
and agree in the p = 0 case up to terms of O(n~1). The difference
comes in the choice of the large parameter. Classically one puts
N = n 4 A/2, but from the differential equation 7.4.1(2), it is much
more natural to set N® = n(n 4 A).

If A is bounded, the expansions (8)-(11) can be improved as follows.
Since

(n -+ Af2) = N(1 + XJaNZ)r,

N =n+ A2 — N-1(3[8) + N-3(xY/128) 4 O(N-5), (12)

the cos or cosh terms with curly brackets in (8), (10), and (11) can be
rewritten, respectively, as follows:

cos{(n + A2)8 4 7y -+ N-1®,(8) + N=3P(0) + O(N-5)}, (13)
cosh{(n + M2)¢ — iN=1,(¢i) — iN-30y(¢i) + ON-5)}, (14)
cosh{(z + )2}y — IN-1D\( + 9i) — IN-Dy(zr + 4i) + O(N-5)}, (15)
Dy(0) = y(8) — X0/8,  Dy(6) = gq(6) - A%6/128. (16)

The choice N = n(n +A) is advantageous since N large leads to the dual
interpretation that either 7 or A or both » and A are large. Suppose now
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that A 1s not bounded We have found that 1f 1n our asymptotic develop-
ments (8)(10), z 15 replaced by zf(n + A), ¢ <€ 1 <€ A, then by confluence
on A {that 15, let A o), we can get hke representations for
parFp—m &y, p,, 3) which include known results for the classical
Laguerre polynomials However, further discusston 1s deferred to 746

Except for those values of z explietly excluded, and the singular
potnts zera, ane, and wfinuty, (8), (10}, (11) hold for all fixed x values
as N— o« For N fixed and z varying, e require that the correction
terms in the above representations be small It appears sofficient to have
the pragmatic restriction N2z — 0, N¥(1 — 2) — 0, andIn] =) < O(N)
for = near zero, unity, and mfinity, respectively

The case 0 < z < | has been studied by Fields (1965b) m 2 different
mannet ustng Darboux’s method of generating functions, and we now
tum 10 74 3 for this development

743 AN ALTERNATIVE METHOD FOR ¢ = p + 1

In this secuon we use Darboux’s classical method of generating
functions {see, for example, Courant and Hilbert {1955} and Szego
(1959)] to deduce the lead terms of the asymptotic expanston of 74 I{1)
for large # when 0 <z {1 We suppose that n 1s a positive integer
[but sce the coraments followng 74 2 (11)] and consider

i (:x,,A/Z A+ !)/21 4=

Grtss) = (1 — 1), a—

e emetie
- gn nt "'F'( Pa

%) [0}

which 1s proved in 9 1(36) I = s fixed and p < ¢ + 1, (1) 1s vahid near
t =0 Ve temporanly assume that

o 18 not a negatwe integerorzeto 7 = 1,2, ,p, 2
A 18 nat & negatve tateger or zero @
& —o; Isnotanimtegerorzero 1% ;=12 p “)

We take 0 <z < 1, ¢ = p + 1, and wnte G(t, 2) for G, pya(2) Then
G(t,z) as a power serics 1n ¢ has radms of convergence umty and
stgulanties at = | and 2 = 4% where

2= (1 — cos )2 = sm?4)2 )

In the Darboux aralyss, we must know the bebavior of G(t, 2) near
these smgulanties
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The behavior of G(¢, =) for ¢ near unity [—4fz/(1 — ?)® near infinity]
follows from 5.3(3). Thus with a; = A/2 and op,; = (A -+ 1)/2 for
h = P + 1:

» * Dap—A
(epr)oy(1 — 21)™ L4+ oy —pparan] 1
Gt 5) = hgl (Pp41)-ap(415) prefon ( 1+ ap —p“:m 7—"—)
(otp)ase 14+22 —ppu, A2| 1
+ (Pp+)=ara(as( 4P prellpss ( 14 M2 —0,,12 'w)
(op)—aenyel (—3)(1 — 1)

(Prs1)-0411s2l (A2)(422) 4112

% F (1+(A+1)/2—p,,+1,(/\+1)/2ll)
2ol 14+ QA+ 1)2—0q,,32 w)

w = —4tz(l — )2, [arg(—w)f < = (6)

The behavior of G(¢, 2) for t near e is more complicated, but can
be deduced from the work of Nérlund (1955). Since

(1 — )% + 4at = (t — e*0)(t ~ &%), @)
¢t near ¢® implies that w = —4s#(1 — #)™® is near unity. Nérlund’s
analysis shows that under conditions (2), (3)

IO (o) A2, (A 4+ 1)[2,
T, el ( ? | )
= I(—d,.)1 ~ w)AM‘:‘l'ME(w) + @pia(eo)s

4d,,q 7 integer or zero;

(1 — @) 2 1n(l — 20)45(2) + (), (8)

4,5 == a positive integer or zero;

= F(_AP+2)(I - w)ApHXpH(w) + (—)1+AP+2 lﬂ(] - Tv)np+2(10) + q)p+2(vu))
4,5 = a negative integer;

Pp+1

G

T T+ 4

where
W=zl —1)2 Ay =Ci—B —A—1=-2—1 (9)

y as in 7.4.2(9), and where ¢,,4(w), 7,,2(w), and @p4o(w) are analytic
functions of w at w = unity, and Xp+2(®) is a polynomial in w of degree
—(1 + d,.2), $p40() and x,,o(w) are normalized so that Ppie(l) =
Xp+2(1) = 1. For 8 = 7, that is, = = 1, the singularities at % coalesce.
For this reason the analysis breaks down into the cases 0 < z < |
and z = 1. We consider the case 0 < 5 < 1 first.
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By Darboux’s method, the coefficients of £ 1n those terms of (6) and (8)
which are smguhr at ¢ = umty and w = umity, respectively, must be
to the coeffi of #" in the right-hand side
of (1) This teads to the representation 7 4 2(3) and to the evahuation of
the coefficients Ay, A=1,2, ,p+2 [see T4LS5-T)] We mext
wllustrate the computation telating to (6}
Let H(t) stand for the first p terms m the expanston (6) for G{t, 2}
Under the assumption that 2o, — A 1s not a positine mteger or zero,
H(t) 1s not analytic at t = umty Put

— 140 —ppis o -z
= b (700 ve| B2 (10)
and in place of £, write 1 — {1 ~ £) Then
20 = T (-radl—0h  G.-=1, ay
&
and
W 2O B
&0 =a T R
N)oae & & (A — 2oy — R)*
S (Pra)a?™ .)-:Q(q*ﬂ.,g B
(e & 042 sty
B ST Lt - .
2!

The coefficient of ¢* in (12) 18 eastly read and comparing with 74 2(3, 5),
we see that
{n + ),
rn.,

AN,

a &
S gl (3 z NS _11_);

YN,y

where df” 15 a rational expression in the a’s whose coeffictents depend
onz The coefficients ¢§” and df” are related as follows If 258, ,4,(2)
15 expanded 1n powers of IV 7 and this series 1s multiphed by Xy el 7,
the resulting coefficients of N-J mustbe 4" since the Poincare coeffie
cients are unique Suppose pow that among the ay’s, one of these, call
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it a, , is a negative integer. It follows from 7.4.1(1), 3.2(3), and 7.4.2(2)
that

LN

Fn(z) = (—”":'_1—)“" p+2_p+l(z)’ (14)

and as (14) must be the same as the left-hand side of (13), it follows that
éf = 0,j = 1. But for j fixed, ¢{” has only a finite number of distinct
zeros as a rational expression in «; . Also ¢{" must vanish when a; is any
one of an infinity of negative integers. Hence ¢}’ = 0,7 > 1. Allowing ¢
to take on the values 1, 2,..., p, we get the first part of the statement
7.4.2(7).

The same kind of computation relating to (8) is straightforward. For
0 < = < 1, the analysis leads to the representation of 4,,,; as given by
7.4.2(6) and after some lengthy algebra the first few coefficients in the
series for 4,,,; are as stated in 7.4.2(7).

We now discuss the conditions (2)-(4). We can remove (2) in virtue
of the remarks surrounding (14). Concerning (3), we can use the
duplication formula for gamma functions to write

T0Gnaltr ) = (1 = t)—A:io = (t)z,;)'( s [(1_-ztz)2]k

= T(A + n)t»
—‘(“—)“m»zFa(

n!

—n, 1+ A,
Pe

z) (15)

n=0

Then, if A approaches the nonpositive integer (—m), only the first
(m + 1) terms on the right of (15) would fail to be defined. But these
(m + 1) terms can be removed by (m + 1) differentiations with respect
to t. The analysis of ™1 {I'(A)G(¢, 2)}/ot™*! can be carried out as before.
Finally, if two or more of the «;’s differ by an integer or zero, then the
representation (6) for G(f, 2) contains terms involving Inw, see the
remarks surrounding 5.1(27-30). But it can be shown that this would
not invalidate the analysis based on Darboux’s method. Thus the
conditions (2)-(4) may be omitted.

We now turn to the situation when z = 1, w = —d4z/(1 — )% In the
application of Darboux’s method, the analysis based on (6) when
0 <z <1 continues to apply when = = 1. As previously remarked,
the singularities of G(¢, %), t = e+, coalesce when z = 1, that is, 0 ==
and e = 1. From (1) and (8) we need n!/(A), times the coefficient of " in

* 1 —#)=2*1n v+1 2
= r(-}))r(a)r(off) IO+ 20~ ) (1)
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1t 1s conventent to let
U= i) =2 Eplt £ 08 gt )
By direct computation, we find from Norlund’s analyss
s=—IA+hH2+ 5 -C)
X (A —1+B —C)+ BB, — .)—(B,-c,)],

DR B-CIRAEL B
= moiTE e Gl th c)g+n-c)

X =3+ By~ C) + Bi{By — C) ~ (B, — €]

(8}

Cornbinung (16) and (17), we have

20D A 23p, )

& = TRy

¥ gl + oyt
=)

BT 2T B & (kb4 20
e &L ” - 09

and with ¥, equal to nl/(A), times the coeflicrent of ¢7 1n (19), we get

V= ROl § 0l 4y 220, a0

T A+2y+8H) LU - -2~

Now from 2 11(12) and the definttion of N, for # sufficrently large,

A+ mhygy ~met i Rt (o A, ~ N i BN, @)
i =

where the &’s and the £}'s are readily evaluated We can also develop
far u suffictently large

[{t =4y —24 —n)) * = N+ Z X (22)

aod 3 we on drove an, for ¥V, . o
powers of N
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Putting all our results together for ¥ = 1, we get

—m,n 4+ A aq (n + X, {ap)
N R D Z ET M
T\ N’
T 2y Ry (1 BN+ OOV,
(23)
where

dy =14 2B, —2C,,
= (24){(A 4 1 + 2B, — 2C))[33* — (A 4 2B, — 2C,)(A -+ 2 + 2By — 2C3)]
+ 24(A + B, — C)[By* — B,C; + C, — Byl}, (24)

and the notation is as in 7.4.2(9). Had (20) been used as is, and
[(1 — 4y — 2X — n), ]! developed as a descending series in (2 4 A),
the last term of (23) would have contained nonzero terms of order
(n + A)~", r = 1, 3. The advantage in expanding in powers of 1/N is
manifest.

A special case of (23) is interesting. Suppose p = 1 and the ,F, is
Saalschiitzian, see 3.13.3(2, 4). This implies that (A 4 2y - %) is nil and
so the last term in (23) is nil.

S. O. Rice (1940) used Darboux’s method for the polynomials
oFo(—n,m 4+ 1, L3 1, p; v) and obtained the analogs of 7.4.2(8) and (23)
as modified by the discussion following (24). His analysis was simplified,
however, by the fact that the generating function G(¢, z) of these poly-
nomials reduces to the classical Gaussian hypergeometric function
by cancellation of factors.

744. Case 2, ¢ < p

In this situation, we must presume that 2 is a positive integer or zero.
As before F,(z) obeys 7.4.1(2), which is of order M = p + 2, and
there are (p -+ 2) descending solutions of the form

(a‘) ( ) — ( l’)"!!l 5
ll+“ (PQ)——G,
[L798 1 + &g — Pg (_.)'I—I'+l
XQHF”H(l-{»—oz,—{—n,l—{-—oz,—n——t\,l—{—a‘—a: T )’

t=1,2unp, (1)

.#(1)(,,) (Gv)n( :.“)" q4.1F (._)‘2—171‘-1 )’

( Q)Yl 74

( —n, —n — pg -+ 1
I—2n—A1—n—uq

- 2)
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#E(s) = ("'.))—..A P
ot
ndhntA—p+1
x"‘F"‘(l+2A+l,l+n+A~«,

e

The restriction 7 4 3(4) guarantees that the solutions (1)~{3) are Imearly

P but this req may be wawved as m the case

=p+1
In general, F,(z) 1s 2 linear combrnation of (I}(3) In fact, under any
far set of on the  and A, F(z) equals

one and only one of these p 4 2 solutions, e g,

X
Fife) = ‘:ﬂi l))*“ &) () @)

1f some oné a,, 18 2 negative integer, —a,, < #, A 18 Not a negative integer,

Flo = H, IR O]

1f no «; 15 3 negative integer, A 15 a negative nteger, 2n > —A, etc We
remark that although the 251, (3), #0(2), and #3(z) are descending
series 1n 2, the way n appears makes them suitable for computation for
large n For the purposes of asymptotic equivalence for large #, one
permuts all solutions to appear, and wrtes for g < p,

e (N,
sl (IR e

+ (n+ N + 2P, (6

1

(7 + Dasa
where the connecting constants of the varrous solutions are those
values which hold m the particular situation when F(z) exactly equals
that solution Then the demumant term of (6) under any set of condstions
15 that solution to which Fo(2) 15 exacly equal As n our previous
analysss, this actually determines the coefficients of the solutions {1} mn {6)
only asymptotically when no a, 1s a negative mteger or zero However,
by an argument similar to that used for the case ¢ = p + 1, see the
discussion surrounding 74 3(13), one can determine these coefficients
precisely and so write (6) as we did

If p > g, (6} s sutable for computational purposes for large n
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However, if p = g, the (in general) dominant term (2) converges very
slowly. If p = g, then by elementary series manipulation,
)
n( + pp — 1)

220 A =D —1Fop)

(n+pp—1) 22 ;

X ?‘ T8 A —=Dm—~1+ a,,)z‘~'+ O (D)

We note that (6) holds for all = except at the singular points zero and

infinity as # — oo. For fixed n and variable z, it appears sufficient to

require | | = O(1) to insure that the correction terms remain small.
Finally observe that by confluence,

ap), —n, —n — py + 1
.#él)(z) = (%)l (—=2)" p1aFpna (1 —2n—A 1 f_Jf 7 —

— (2)n

(PD)n (-—-Z)" P

—n, 1+ A, o
Pq

lim ;. F,

a0

(*11, n ‘:q)‘, %p, O l §) = p2fy ( z)’ (8)

and that confluences on the ¢, (2) terms in (6) can be carried out
in a similar fashion. By p + 1 — ¢ such confluences, we drop from
Case 2 to Case 1, and by comparison of the £§%, ,,1(2) terms, we see
the consistency of our choice of the connecting constants 4,

t=1,2,.,p, in 7.4.2(8).

145 Case 3, ¢ = p + 2

In this instance, we take

Ne=unn+2), PB=g¢g—p+1, B=3 (1

The analysis is similar to Case 1 (8 = 2). F,(z) obeys 7.4.1(2), which
is of order M = p 4 B. The L&Y, (=) functions of 7.4.4(1) are p formal,
descending series in z which satisfy 7.4.1(2). Although in general they
are divergent, they serve as asymptotic expansions for large z to valid
solutions of 7.4.1(2), and as mentioned before, are suitable for com-
putation if n is large. The confluence argument at the end of 7.4.4
indicates that the £, (=) solutions and their connecting constants for
F.(s) are independent of the case number. The lead terms of the
exponential asymptotic expansions of the remaining M — p = B
solutions around infinity are computed by the formal procedure given

in 7.4.1, and are denoted by #¥)(z), j = 1, 2,..., 8. Thus under suitable
restrictions on z,

~ d (" + A)-a( {x,) 8 (5}
v f s fato o
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The constants A4,,y, 5 = 1,2, ,§, are determined asymptotically 1
their lead terms by exploitation of the fact that

b Fe (n(ni))) =Fe (::I ). &

and that for 0 < | z | < n{n + A), the representation (2) coalesces with
the asymptotic representation of the latter F, for large z, see 511 2(1)
Thus we write, through the 7, terms [see 74 1(6)],

,»,F( n.n-{p\ a,‘z)

227)0-021p )

2 {n+ N, 29 3+ e (Aeay

EACE ]
X €xp{Nat 88 cos{nif) 4 azfd — (N2V8)20(2) cos(x'B) + O(N %}
X cos{Nat5gsin(nfB) + my + (Nz! #) 12(z) sinm/f) + O(N-2))
+{f — 2) exponentially lowes osder tersus,
lagzl<7m—¢ >0, (4

where
Nt = n(n + A, B=g—p+1
P .
B, =3 o, C =3 pi
=1 =]

s o1 e
=Y Lox. C=1 Nea
Y] E=E=

5)
=8 —1+28, - 26, @

Q) =28 - 1) A+ — 1) Nz — )y,
N =af3,
A =N +28, ~2C, + 1)~ 4
C— B+ 297B, — QB+ C)+ B~ G~ 2)
+(248) (B — B — 1)
a=1f =3, a=0 o B#3
b=1af B=4, b=01f B4
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We point out that this procedure and hence (4) fails to include higher
order terms in the connecting constants. In this regard, see the remarks
surrounding 7.4.2(5-7).

A representation valid along the negative real axis can be similarly
constructed. The connecting constants are determined from (4) by
comparing the dominant terms in those overlapping regions where
both representations are valid. Hence

e T T A TS
~ LG, Frede) Gy

X exp{Nz1/88 — (az|3) — (N=1/8)1Q(—z) + O(N-2)}

—m,n -+ A, q
Pa

piaFa

(o

+ (B — 1)} exponentially lower order terms,
jargz | <7 —e, e >0, 8§ = +4(—) if argz < (>)0, (0)
where the notations are as in (4), (5).
For fixed =z, (4) and (6) hold for all z save at the singular points zero
and infinity as # — 0. But for # fixed and z varying, it seems sufficient

to have | 2| = O(n~?) near zero and | z| < O(n*~%) near infinity to
insure that the correction terms remain small,

7.4.6. COoNFLUENT FUNCTIONS AND POLYNOMIALS
By confluence, if # is a positive integer,

—n, 1+ A, o,
Pq

o~
<

7 +)\) = m+1Fa

(——n, o

qa

lim 0B 2). (1)
From 3.5(21), we see that this relation is still valid if # is not a positive
integer provided that p+1<gq, |2] <o, or p+1=gq,
5| < |n + A|. Thus the asymptotic representation for the right-hand
side of (1) may be derived from those for the above ,,,F, except when
P = g, which can be treated directly by the methods used to get 7.4.2(8).
If p =0 and g = 1, the right-hand side of (1) is essentially the
Laguerre polynomial, see 8.1(33). If ¢ = p + 1, we call (I) a generalized
Laguerre polynomial, and in general we call (1) an extended Laguerre
polynomial,
We first treat the case ¢ = p + 1 explicitly. Replacing = by 2/(n + A)
corresponds to replacing 6 by 2{z/(n + A)}/*{1 + O(A-1)} in 7.4.2(8).
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Thas,
.
sbra (T ]5)
2 (e a l o —ppy | _1
O e et (PN S el

+ sl enl(52) + 5) Mo 4 O

X cos(2naP’® 4 my — {nayVNy(z) — (P (s) + O Y,
jagz|S7—e >0, (2)

where
$ifz) = (12772 + (B, — Gla + oy,
$a(z) = (16721 + 2tz +

af = (8)(B; — Ci)2B, + 2C; — 1) +{2) {(Cy — By,
¥5{2) = (320) 124 + (18)7(By — 1) + o F wg + w5,

wy = (4B, — CY3B, + €, — 2) + C; — B, — 316,

ay = (16)HC, — B)(8B, — 8B, + 118, + €, —2)

+ (8 NG — BY(2B; — 3) — (NG — By) + 3,69,
wg = (32) YB; — C )2 — B, —3C)) +(8) (B, — C;) — 1/128, 6]
wy = (18) (B, — C,)(8B; — 5B,* — € — 2R,C, + 6B, + 20, — 3[4)
F{UB: — OBy + G~ 2}~ (2B~ Cy),
wy = (192) YB, — CC,® + SBCy? + 35BC, — 105B,* + 1368,
~+ 1608,B, — 24B,C; — 8C,Cy — 40B,C, — 4C,* — 192B,
— 64B, — 918,12 — C}f2 + 9} + (2B, — C,{2C; ~ 10B,
L 6C, — 30B, — TB,C, + 158, + T3/4)
+ (6B, — CKC, — 3B, + 6) + (3) X(B, — C,) + 21/1024,
and the B/’s, C's, and y are as 1n 74 2 (9}

Note that i the notaton of 7429} awy = py, wp=p3, and
wg = pyf3 Further, we can show that —m, 15 the coefficient of A% i
g and w, 15 the coefiicient of X 1o gz

As usual (2) holds for all fixed z as 7 — co except at the simgular
pomnts zero and infinuty, and along the negative real axas If n 15 fixed

and = 15 allowed to vary, additsonal restrictions must be put on z to
wnsure that the correction tetms remain small
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Treating 7.4.2(10) in a similar fashion and using the same notations
as in (2), we have

IRV O ( —-z)

~ i -—-(a” )_....___-._i’(zewn)ﬂ' ( o, 1oy — poyy
t=1 (" + l)a‘(Pwl)—a, prae

—1, &,

Poi1

1)

Lo+ n, 14 o — o

L2 (i) expl(—(12) — () (=) + O~}

X cosh{2(nz)/2 + (nz)"1%4y(—3z) — (nz)3%fy(—2) + O(53)},
largz | K m—e €>0, &=+4(—) if argz <(>)0. (4)

Again by confluence of 7.4.5(4, 6), (2), and (4), we can get asymptotic
representations for ,F (o, ; p, ; 2), p < g, for large 2. These results are
given by 5.11.4(2-5).

As remarked in the discussion following (1), results for the case p = ¢
are found by the same techniques employed to get 7.4.2(8). For the
Darboux analysis, we employ 9.1(39). We suppose that z is a large
positive integer, though the equations hold for more general # under
suitable restrictions. Let

*
(ocy)_“‘z‘“t o, L +ap—py

(Po)=y "7 ”(at-f—n—{—l,l—f—a,—a:
y =B, —Cy, u = B, — C, + y(1 — By),

Plad oy
Lpaal3) =

>

b4

(6)
v=~C,— By + }y(B, + G — 1),
where the notation is as in 7.4.5(5) with 8 = 1. We find that
» —N, ay -\~ 2 1 Pl o
pﬂrp ( P "’) Z; (n -+ 1)«, -?I'-H.p(“')
Dlps) (1 .o (NZET\Y v B
T eyt (1 —z) P §§E+5+O(" Rt
7% 0, Jarg(l —2)| <7 — ¢, e >0, )]

and the sign of [nze=[(1 — )] is chosen so that this term is positive
if y is real and & < 0. Here = can take on unity if it is approached from
the left. Equation (7) is also valid for |arg(zx — 1)| <7 — ¢, € >0,
provided in the second term of (7) we replace [nze—ir[(1 — 2)] by
[n3/(z — 1)} and choose the sign of the latter so that it is positive if y
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15 real and z > 1 In thus situation = can take on the value umty of 1t 15
approached from the nght Further,
S TR N N R
s (T |-3) Lo e

v
+2+ 0009,

Tles) n{_7E \"
+eg 0+ 5 e
250, JagziKr—¢ >0,

S=4(-) o ags<(>)0 ®

0 (8), [2/(1 + 2)} 18 positive 1f z > 0 and y 15 real



Chapter VIII ORTHOGONAL POLYNOMIALS

8.1. Orthogonal Properties

In virtually all of our work, we are concerned with the classical
orthogonal polynomials. However, to introduce the concept of ortho-
gonality and its applications, it is convenient to consider real functions
defined over real intervals, although the ideas are readily extended to
complex functions defined over paths in the complex plane. See the
remark following (34).

The standard book on the subject is by Szegé (1959). For other
references, see Kacmarz and Steinhaus (1951), Erdélyi et al. (1953,
Vol. 2, Chapter 10), Tricomi (1955), Sansone (1959), Geronimus (1960),
and Abramowitz and Stegun (1964).

Consider an interval (@, b) and a weight function w(x) which is
nonnegative over this interval. Let {f,(x)} be a sequence of functions,
such that 8,2 is integrable in (a, b). We define the scalar product.

6., 0,) = j b (%) Oa(x) Oyn() d. 1)

1f a(x) is a nondecreasing function, we may generalize (1) by the Stieltjes
integral

(60 60) = [ 0) 00(5) ). @

So if a(x) is absolutely continuous, (2) becomes (1) with w(x) = a'(x).
If a(x) is a jump function which is constant except for jumps w, at
¥ = x;, then (2) reduces to

Bn)80) = 3 0,0,02) On(s). 3)

1=0

This is the appropriate definition for the scalar product for functions
of a discrete variable.

The sequence of functions {f,(x)} is said to be orthogonal [with
respect to a weight function w(x)] over the interval (a, b) if

(0'! * Bm) = 11"8"1" (4)
267
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where

= (00, 80) = [ O s, ®

and 5,4, 15 the Kronecker delta function That 1s,
Saa=0 if m#En
=1 of m=n ©

I€ &, = | for all =, the system 1s said to be orthanormal Clearly any
orthogenal system can be made orthonormal if we replace 6.(%) by
sy

A nasural question concerns the possibility of representing an arbitrary
function f = f{(x) as a sum of orthogonal funcuons, thus

-
f=Yab (U]
&
Assumung this 1 50, then o a formal basis we have
()= alb.b)=ak, a=hrYL0) @)
=

The a's are often called the Founer coefficients assacisted with f, and
the series on the nght of (7) 1s called a generalized Fourter senes The
fact that we can calculate @, does not guarantee that the seres on the
nght of (7) convesges, or if the senes converges that its sum 15 f
Throughout the discussion we suppose that f? f*(s) u(#) dx eusts and
1s finite m the Lebesgue sense The class of functions for which this s
true 1s called L, We further suppose that {6,(x)} belongs to this class
Let

Jn

A ©
1)

Ve call £, an approximation to f of order n A measure of the accuracy
of this approumation 1s afforded by the mtegral

L=t b= [/(x) ~Funwfane a0
R
A best choce for the 4.’s 15 that shich makes 7,(5,) 2 mummum, of

such ewsts, 1n which event we speak of a best mean square 3pprosimation
to f(x} We now prove the following theorem
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Theorem 1. Of all the nth order approximations to f(x), the best in
the mean square sense occurs when by, = a,. .

In other words, the best approximation is the (n 4 1)th partial sum
of the series on the right-hand side of (7).

PROOF. We have

I(by) = j b P ) ds —2 Y b j b £(%) () w(x) dx

k=0

n b n b
+ 3 b f 02 w(x) dx + 3 bibm f 8,() O,m() () d.
k=0 a lz::? a

Use the orthogonality property, and (8). Then

b n n
Lb) = f F@) ) dy —2 Y abdy + Y by

k=0 k=0
b n n
= [ f el ds + 3 (b — @ b — ¥, ah,
¢ k=0 r=0

and this is least when &, = a; . Then a measure of the accuracy of the
approximation is given by

I{ay) = j b F2x) w(x) dv — 2_3 ah,, . 11

Since I(a,) > 0, Tk_p a;2h;, converges as n — 0, and we have Bessel’s
inequality

. ahe < [ 7 wte) . (12

k=0

When there is equality (the formula then goes by the name of Parseval)

for every function in L%, then {6,(x)} is said to be closed in L2 In this
case

lim f " [f(x) - A:Zo ak()k(x)]zw(x) dx = 0, (13)

and the partial sums of the generalized Fourier series are said to converge
in the mean to f(x).
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In the case of functions of a discrete varmable [see the discussion
around (3)] suppose that

FAGRES ,).:., i), (14)
g 0050 805) Ws = Hobem )

where TV, = () 1s positwve and 8, 1s the Rronecker delta function
Now multsply both stdes of (14) by 6,(x) ¥, and sum on 1 from 0 to 5
Apply (15) Thea

&= H Y, 8lx) fule) W, (16)
&
Thus, if f() 1s known at the (n + 1) distnct points z;, t = 0,1, ,n,

F®) = folx), then f,(%) as given by {14) 1s 2 curve it to f(x)
Suppose we have another curve fit to f(x) tn the form

£00= T a0 It = i) =) )

‘Then 2 measure of the accuracy of the curve fitting process may be
descnbed by

- - N
) = T {flxd — T dbuledt We 18)
= =]
After the manner of desming Theorem 1 we have the following

Theorem 2 The best approvimation 10 f,{x) 1n the sense that 1, {d,) 1s least
happens when ¢, = dy, and n this instance

Liey = Wafile) — 3 bt )
Z Z

We omt the proof Such an approxmation 1s smd to be best in the sense
of least squares

Next we consider orthogonal polynomuals for which we use the symbol
45y They povres yvar vopertant, propranes (grem by Thavmema 3 5
below) which make them very suitable for use in approximation theory
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Theorem 3. The zeros of g,(x) are simple and lie in the interior of [a, b].

PROOF. Now any polynomial of degree m < is a linear sum of the
polynomials ¢,(x), { = 0, I,..., m, and so is orthogonal to g,(x). If
gu(x) = 0 for x = b;, i = 1, 2,..., m <=, b; €(a, b), then

) = [T (s = 8 0.9
is one-signed throughout [a, 4]. This would imply that
[/ o) play v 2 0
However, in view of orthogonality, this can happen only if m = n.

Theorem 4. Let

@) = Y aqlx),  fulx) = Y agi(x).
1=0 *=0
Then [ f(x) — f.(x)] vanishes at least (n + 1) times in [a, b].
The idea of the proof is similar to that for Theorem 3 and we omit
details.

Theorem 5. Any three consecutive orthogonal polynomials satisfy a
recurrence formula of the form

9n+1(\) = (A X + Bn) Qn(\) nQn—l(\)y n = 1: 21'" 4 (20)

Furthermore, with
n
qn(‘ = Z ay ¥ )

we prove that

Qnviontl Ay _t,n
A, = a , B, = Ay(ths1 — 1), Ty = ——,
non yn (21)
C = Auh, . Byt 1%n-1,5-1Mn h o= (q q)
n — - o 3 - .
A -lhn-q ((I,, 'n)- hn—l " nyam

PROOF.  First we note that with 4, defined as in (21) Gn1(®) — Apxq,(x)
is a polynomial of degreee 7 or less and of necessity, we must have

Gnr1(¥) — An¥ga(v) = Z x (%)

L=0
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Multiply both sides of the fast equation by g,{*) w(x) and integrate

fromatod Thenby orthogonalny, weseethat¢y = ¢ = =, 3 =0
and
~An{5gna s Q) = Epthuy o )
Thus,
Gurs{¥) = Ap39a(x) = Enagus{1) + £atal)

which proves (20) when we sdentfy ¢, ; = —Cy, ¢, = B, Now

—y

Hue) — 22 g ) E dil)
i

since the polynomual on the left 1s of degree (# — 1) or less Muluply
hoth sudes of the latter by g,(x) w(x), integrate from @ to & to get

o = —Co = —dohaf Ay oty 4 3

Finally, the value of B, follows upon equating hke coefficients of 2
1n (20) Note that (20) 1s also vahd for # = 0 provided we put ¢_y(¥) = 0

From (20), we easily obtain the Chnistoffel-Darbous formulas

é TS ) = (A L) qu(y: = ;..(x) Zana¥) |
@9

T A0 = (AT ) o) ~ 0 el
;

Orth 1 pok Is also play an role
mtegration This topic 15 considered 1n 163 1
As prcvmusly remarked we are primanly interested 1n the classical
ds These p are special cases of Gaussian
or confluent hypergeometric fanctions and wvirtually all the results given
wm the later sectrons can be dersved from the matersal tmn Chaptess 11T
and IV ‘The data 1n Chapters VII and IX are also pertment From
{25){34), we see that all the classtcal orthogonal polynomuals stem from
the Jacobs polynnmlzl Pl ®(x) of degree n If, m the hypergeometnic
of P§ (x), the n 15 allowed to be an arbitrary
compkx xmmber then the hypergeometnic function 1s called a Jacoby
function of the first kind The Jacobr function of the second kund 1s
wasanteally tha sreond sitean, of he dffviezanl eyahen snted by
the function of the first kind Simdarly, we speak of Legendre functions
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TABLE 8.1
Name a b w(x) Eq.
Jacobi:
e, @+ Da (-n,n+a+ﬂ+l l—x) _ e g
P = Tepl w1 > 1 1 {1 =21+ 2F (25
Jacobi (shifted):
R:ﬂ'm(x) - Pflu.ﬂ)(zx - 1) 0 1 a - x)axB (26)
Gegenbauer or ultraspherical:
tatald) (20 + D o) 2
x) = ———— -1 1 1 — &%) 27
e = T BT @ a—wr  @n
Legendre:
Pofs) = P -1 1 1 (28)
Chebyshev (first kind):
n! (—1/. -1/2) 2)-1/2
- — x%)- 29
Tolx) = . (%) 1 1 1 — %% (29)
Chebyshev (first kind, shifted):
Ti(x) = Tu(2x — 1) 0 1 [=(1 -2 (30)
Chebyshev (second kind):
(n+ D! arearm
Un(x) = ——— P50y — — x2)1/2
(x) G, (=) 1 1 (I — =9 31
Chebyshev (second kind, shifted):
U:(x) =Uy2x ~ 1) 0 1 [#(1 — 2] (32)
Laguerre:
Lm(r) hm piP (l - -2—;-) 0 o e~ex
= llm R(a A ( — :)
B
- ("1 (B.)
(=) lim R, (x/B),
@ (o + 1),
L, (x) = Fi(—nm a0 4 15 2) (33

n!
The polynominl introduced by Laguerre is the case @ = 0.
Hermite:

HM‘H(‘) = (— )2.m+e Ix (r-xl:( ) —o ® e"’
=1

e=0 or

(349
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‘Though of Jacobi pol: ls carry over to
Jacob: functions, we delineate results for the polynormals only

The classical orthogonal polynomtals may be brniefly described by
Table 8 1 which gves the name of the polynomual, 1ts analytical name,
the bing the range of and the weight
funcuun In addrtron, data are given to show that all the polynomials
are special cases of the Jacobr polynomal Identificauion of the Jacoln
polynomial and the Laguerre polynomal sn terms of a ,F; and ,F;,
Tespectively, 18 also presented

The Bessel polynomuls oFo{—7, % + », 1/2), which are confluent
forms of the Jacobi polynomsals, form an orthogonal set where the
mtegration 1s performed over complex paths {see 14 2(26))

82. Jacohi Polynomuals

“The Jacabt polynomtal has been defined by § 1(25) We suppose that
> —1, f > —1 so that w(x) 1s nonneganve zad mtegrable tm [—1, 1]
However, many of the formal results are valid without this restniction.
Theterma + 8 + 1 oceurs very frequently and for simplification we put

A=at+p+1 )
In hypergeometnc form, we have
Pty = (a: 13N " (y:,:TA 1 ; x) ®
Cr@+De o (—mn+d( 1+
= nt *F’( B+1 | 3 ) @
Clearly,
By = () PR, @
poogy - L ;&:' L I (fx+ Bn
Also
PPy o (:f")(‘a(: 'i;)‘)n PEY), )
(e 2 ! (= ~
e py @ +alL(”;l)- FPaNY ®

"Thus P{ “)(x) 1s an even (odd) polynomsal 1f 7 1s even {odd)
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Rodrigues’ formula is
2l BEP(x) = (=) (1 — ) (1 + =° (@d")(1 — 2" (1 4+ 27, (7)

and from this we have

= S (LG I e e s @

k=0

Also,

P'(Ia,B)(x) Z k(« B) r

k(u.ﬂ) _ (__)r (OL + I)n (—n)r (71 + ’\)r F (r —n,n+ A +r
T rl (o + 1), 27! b a+1-47r

(B Du(=n), (n + N, o (r-n,n+A+r
r1 (B + 1), 2rnl AU B4 14

2

) o

In particular,

pen _ (n+An pon _ (=B ICn+A—1)
L nin 2%n — I\ I'(n+2) °

(10)

In general a more simple expression for (9) is not known unless o = f.

k(a o ( )" (°‘+ 1),,(—‘71)r(7l+20£+ 1),F(a+ 1 +T) P(l) (11)
TG+ D I —n T D2 L o2 F o+ 1]

and (11) vanishes whenever n — r is an odd positive integer.
We have the following differential-difference properties:

a ——.x)——:f—(:i)(—'x)——{-[ﬁ-——a A+ 1) ]w—f—n(n—f—)\)l’,(,“'ﬂ)(x) =0.
(12)
{«,8)
@2 — 1)1 — o) L) i gy — 202 — 1) 4] P
+ 201 + ) + B) P, (13)

2n 4 1)(m +2)@2n +1—1) P,(,“;f)(x)
= (21 +N[(2n + A —~ )21 4+ A 4 1) x + o — B P=Ox)
—~2r + o)(m + B)(2n + A + 1) Py, (14)
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(A UL — ) P ) = 2 o 1) P Nw) — 2+ D) PN

it}
@5+ A+ 11+ ) PE = 25 + B+ 1) P ) + 200 + 1) Pl w)

[

(1 — 2) PP O(x) + (1 + #) P *%x) = 2PL Ox), a7

@5+ 2~ DRI = (n+ A= D) — (n + HELY)  (18)
Qo +A—NPEFE) = (A =D EE) + () PEN) (19)
P o) — PRt ) = P [0}
2"%:"«’-’ =N PN m=1,2, n @)

The orthogonality propesty 1s given by

J" (1 — 3 (1 + 5 P2 Ox) PE ) dx = by,
a
_Pratoet+ N In+8+1)

b G TN TE TN @
Some mtegrals involving the Jacobr polynomsal follow
{ * POy ar
2
- (nt X e 2 (x=-f) (o 8,
=2 T e Nt G e o @

Ay Tin 4841
[CES W R IT))

e

(B +9) )
TG A e T ]+

2 (= 07 1) B ey e
f
= POy (1 — £ (1 4 2 Pl Mgy N
20 (1 — iy Py ae
1

P et 2 ek BT A
= O AR N T e AR a9)
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1 P o pia,8)
J’ (1 — 2)° (1 + x)° PoO(x) dv
-1

= (=) f ; (1 — P (1 + 2)° P&x) dx

_ (B D2+ DI D) p (—n, n4Ao+1 1)
N I(p + o +2) B+ Lop+o+2

R(p) > —1, R(e) > —1. (26)

[ =242y %

_&=r 228 e + 1) T(n + o« + 1B — o),
nl Do+ o +n 4 2) ’

Rle) > —1, R(@) > —1. @7)

For other integrals involving Jacobi polynomials, see Erdélyi et al. (1954,
Chapter 16). See also 3.6(26), 5.6.4(13, 17).

For the expansion of integral powers of x in series of Jacobi poly-
nomials, we have

= Y a,P&x),

n=0

_ 27mlP(n ) n—m,otn-41
= n — )l I'2n 42371 ( n+A+41 2)’ (28)
A Z b PEN), €=0 or e=1,
n=0
b = Cmt-e)N2u+at3+eI2n+20+1+e)T(3) 29)
iy g\ P2ntate+ 1) m+ntat+3 e’
Also,
(=2 = ¥ P,
n=0
o = (=)y2mm! Do + m 4+ 1)(2n + X) I'(n + ) 10
" m—mIla+n+)ImFa+AE1) " (30)

See 8.4 for expansions of arbitrary functions in series of Jacobi poly-
nomials.
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We have the geperating functrons

R=(l-2c+ 2 ~l<x<l, lz{<l, R=1 o #=0,

T A8 + D] P PR 2" = (L4 2755, (
=

T P 2t 2R — 2+ Ry (1 + 2+ R,
A

~l<x<], 121 <1

A2, (l + D22z 4+ D=
TFE/

Gy

62

Szego (1933) has shown that there exsst functions f, (8) which are
regular 1n 0 < § < so that

PoP(cos 8) ~ (sin £/2)* (cos 62) (0 sn ) fj [ 2 i S 8) Jata o)t_
e 1%

where

D<fkm—e O<e<n

pomn e Ll = E () Jasetd

"The first few of the f, ,’s are as follows

55"

o=t 8=

0= -5y 1]

Hms0-51n9+5(92)0039/2—51110/2

feo=""3peng g sin 62

_Bmnd2 | BB+ 1) ang2
16 6 16 [

2 ﬂn (2tan /2 y ‘/’]

=Bl

R0 = CER N

23

3%

3%)
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Further, if the series in (33) is truncated after m = p — 1 terms,
p =1, and the error in the Jacobi polynomial is notated R,, , then
R, = 0o=0(n-o5)  if n6>c,
= O(n*7) if nf <e¢,
o, =3 + [ + D) (36)

uniformly in 0 <8 L7 —¢ 0 <e<<m Here ¢ is a fixed positive

number.
For the ultraspherical case (« = B), with o = « + %, we have

P9(cos 0) T@) 2"2“‘( 9 )“ f [nl0) 671y oma el + 1) 6]

() sind/ &, (n + pym-utliz
0<f8 <7 —e 0<e<m, (37)
p — 1) (6 cos 8 — sin )
Moy =1, po) = e DOcst sl
D -2
folf) = !i(ﬁ_ls)(i‘___)_ (38)
[(1-3) sin® 8~ 2(u~ 1) Bsin O cos 6 -+ (u + 1) 62 cos? 0 + 26 sin2 0]
X M sin? § ’
R, = 67~40O(n+-7-1) if n0>=c¢
= Ofn?s-2r-1) if nd <Le, (39)

uniformly in 0 <8 <= — ¢ 0 <e < where ¢ is a fixed positive
number.

If o = B = 0 so that p = }, then we can replace asymptotic equality
by equality in (37) and the series is uniformly convergent for
0<0<b,—¢ 0<e<b,, where 6, = 2(21/2 — 1), and

Peos0) = ()" 5 IOl £ D) 4 oy, qag

sin 6/ 1=, (n+Hm

Here f,,(0) is given by (38) with u = 3. Equation (40) has also been
proved by Szegé (1932).
A number of inequalities are known for the Jacobi polynomials.

In view of our applications it is sufficient to quote the following [see
Szegs (1959)]. We take « > —1, B > —1.
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Then
L B = Pt = A - B oy
g=max(e, § > — @

(PR = | PP = a7+ O 7))
g=max{xf) <~} @)
where x 15 one of the two maxunum ponts fearest x, = (8 — a)fd
Thus,
PRy =00, —1<x<l, o, g=mx(—faf) (43)
We also have

IE 2 "‘) ~ 0, ~1<x<l Ao

o =max{2m 4o 2m+Bm—}) L]

Better estimates can be deduced from 7 2(8) or 74 2(8) and 74 3(23)
See also (33)(40)

In many zppheations, 1t 13 moTe convement 1o use the shfted Jacoby
polynomal defined by 8 1{26) We have the connecting relations

B = PrPer 1) PR =REU0+m2, (45)

sa that for RE™(x) diog to those for P§H(x) are
easily set down It 13 convenient to record some of these for the apph-
cations We also develop some results for repeated ntegrals of the shifted
polynomyals

Fef) = ffe+ punheR (07 A )

= P+ R (T T “o
RO - 2) = (—RD ) “n
2P0 = (x + Dufnt,  RE0) = () (B + Nuin! “3)

D) = (VP AN — bl
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In some considerations, we need the repeated integrals of

Q(a 8. ")(r) Q(a .8, V)(‘U) = (u.B)(x),
which we define by

x
Ol ) = [ Ol ¢

1
= J 0
If v = 0, we simply write

Omf ) = RYP(); R(e) = RYO(a)

Clearly,
{e.8,0), %) = (—)"(B + I)nxv+r —n,n -+ Av 1
Qu7"(x) = n! (v + 1), F@+1Hw+1)
Q) (v 4+ Dux™" (amr vt r)
= Do rrrD O
(ul v)(l) (_)n(,, -+ l)n

@+ D), +r+ D(r—o),’
Q(u W, v)(l) =0

for « a positive integer or zero and 7 — o = 1, 2,..,, 1,

0(0 vv) ( )nxn-}v(l _ x)'l
) = n!
(,8,v) \r+R(V)
1O x)| < e max_ | RE? ().

Dl (R(») + 1), 0<=z1

Estimates of Qf:2")(x) for large n with «, 8, v, and r fixed and 0 < x

are readily deduced from 7.4.2(8) and 7.4.3(23). Thus,

by —Y(si 2r-2 B-2v-2
ofpy = CXERIIC AT 11 4 o +97)
(sin 6/2)r+2-6-1/2(cos §[2)r-a-1/2
(n + Ar+E0(E)
X cos{(n +A2) 0 — (m/2)(B + 7 + 1) + O((n + )}
X[IT4+0O((m+AY], x=sin282, 0<r<],

+ (-

(v =ty RS dt,  Rp) > —1.

281

(50)

(1)

(52)

(53)

(4

(35)

(56)

7

(58)

<1

9
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- v Ao
ey = SERE DN 1 - 55 + o)

Ao of ~
+rErTo I o)
Nt =n{n4-3) (60
An alternate development of (60} can be proved as follows From
3133(11),
b2y = 4+ B, ©1
ae (=PI + B+ DI +1—n~2)
TG rFlon - NI+ A+ 1)
mtAndatLntd—v—r
xaF (T ).
YA D4 B+ DI +A—1 %)
BN~ B+ +DTE TN

vilv4+l—B1—r
< ) ©3)

62

=t

For A, use 3 13 3(14, 16) tn the form

F0,4,5 =F0,2,3 a=n+) pentatl
e=ntA—r, e=n-+r—y, f=2n+r3+1 &)
Thus,
= T4+ NTa+a+Nn+A~v—1)
T tB+1—nTa+i —nNr+0 T+ 8
—ntlr—a
A USRS
and from this we deduce
Ne-te
A=y [1~ + o] 65)
Now use 3 13 3(31) for B with
=2 Fo0) = Fy(0,4,5),  F 1) = Fy(1,4,5),
a=v41~8 b=v41 £=1-r, (66)

e=vd2—n—-2 —ndv42
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Then
(=T +B4+DIn+A—r—v)ut+r—INTp+1)
'n+A4+1—nIm+r+v+Dul(er—INIE—v)

l—ra4+1—rv+1
X:’Fz(l—r-—n,n—}—/\—{-l—r 1)’

B =

(67)

where B = 0 if r = 0 and for r > 1, the latter ,F, is to be interpreted
as a finite sum of (r — 1) terms. We find that

(T D NERT L oB .
B="%—nre =y [1 — 35 +ow), (68)

and the combination (61), (65), (68) yields (60).

8.3. Expansion of Functions in Series of Jacobi Polynomials

Suppose formally that

w0

f@) = T ePr ). ()
n=0
Multiply both sides by (I — x)%(1 + x)? Piy"#(x) and integrate from—1
to 1. Then in view of 8.2(22),

= ) [ )L — (L + 3PP d. @)

The coefficients ¢, are often called the Fourier coefficients associated

with f(x). The evaluation and estimation of these quantities for various

types of functions are discussed in 8.4. Here we are concerned with

the representation of f(x) by (1). As in the case of Fourier series, we

seek conditions to insure that the series converges and that its sum is f(x).
We quote the following theorem.

Theorem 1. Let f(x) be Lebesgue-measurable in —1 < x < 1, and let
the integrals

[La=ara+or i@, [ = a0 4 a0 o) ds

exist. Let s,(x) denote the nth partial sum of the expansion of f(x) in series

of Jacobi polynomials, and s(x) the nth partial sum of the Fourier cosine
series of

(1 — cos §)/*(1 -+ cos 6)**1/4f(cos 8).
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Then for —1 <z <1,

Tim fr,(x) — (1 —~ )™+ V) =0,

umformly in —1 + e <a<l—¢e0<e <1

Thus 1s called an equiconvergence theorem For proof, see Szegd (1959,
p 244) Clearly, applicatian of the thearem requires knowledge of the
convergence of the Founer senes for f(x) In this connection, 1t 1
sufficient to quote the following result fsee Zygmund (1959))

Theorem 2 Let f(x) be persodec and have persod 2m If f'(x) 15 contimusous
m —m K x K woexcept for a fimte number of bounded jumps, then the
Fourser sertes for f(x) conterges pomtscsse to 3[f(s — 0) + f(x + 0)}
Furthermore, the convergence 15 umforrs n any closed snterval which does
not mclude a pornt of discontimuely of f(x)

Rau (1950) has proved the following theorem

Theorem 3. 1If f(x) ss contnuous 1n the elosed nterval —1 < < 1 ond
has a precewise continuous derseative there, then with a > —1, B > —1,
the Jacobr serses (1) assocated with f(x) concerges uniformly ta f(x) m
el —g0<e<]

In the case of analytic functions [see Szego (1959, p 243)] we have

Theorem 4. If f(x) 5 anabtic in the closed mierval —) < x <1,
then the Jacobs series (1) assocrated with f(x} 15 conuergent sn the intertor
of the largest ellipse wath foct at +1 tn wohick f(x) 15 analytrc

For an application of Theorem 1, we have

(=2 +2) Tn + N—p)a

(a B),
T rB I NTe A ta i ™ ®

:‘=F<p+ﬂ+ui

valid for
a>—1, B>~ —R()<mn(g+1),p2+34),
essLl—y O<ex]
The coefficient of RY #(x) in (3) readuly follows from 8 2(27, 30) Suppose
R{) >0 If x — 0, = — 0, the senes on the night-hand side of (3) con-
verges and is sum s zero Swnce B> — 1, mun(0, 8 + 1, B2 + 3/4) =0
2nd o (3) 13 valid for

27

a>~1, B>~1, Rp)>0, 0<x<l~e O<e<] 6]
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If x = 1, the right-hand side of (3) converges to unity if R(x) > %« — B).
Hence (3) is valid for

«>—1, B>—1, —RE<mn0if—a) O0<x<l (6
With the aid of 8.2(43) and 2.11(11), it readily follows that (3) holds
in0 < x < 1 when R(u) > 3(g¢ — B), that is, when
~R(x) < min(0, }(8 — o), 48 + ).

However, the latter is more restrictive than (6). We can also show that
the equiconvergence theorem gives better conditions for (3) than
Rau’s theorem.
If p is a positive integer or zero, x* is analytic, and (3) is valid for all «.
An easily proved generalization of (3) is

e o ()@n + ) Dl + N
wer =T+ B+D 3 ey g T IG £ A5 + 1)

g+ Lp+p+1 (.8)
ng"'(p.—-n-{-l,y-{-n—}—/\—!—l z)R,, (), O

valid under any of the conditions (4)-(6) and | 2| << co. For further
generalizations of (7), see 9.1(1, 12) and 9.2(2, 7, 14).
Another expansion of interest is

©

5 = ¥, e P,

k=0
a > _‘1’ ﬁ > _'1! R(p) = 0: 0<x < 1: (8)
where
e VT AN TG Lo DI LX) (k= ~k—p =3 ]
- Pk+B+1)Ik+p+ArA+1) = —p —RB 2
+ (-—)kHw(Zk + ) I'(k + A) ginlo+h)
ALk + & + 1) I + B + 2) I{(—p) cosnp T B)

C

—~k—o,h+B+111
xah ( +B+g 3 2
Ifo =B,
e = (=Ph(Rk 420 + ) Ik + 20 + DT[] +p — k)2
ke 252420k o + 1) T[(k - 2« - p + 3)/2]

X (=) + &™) (10)

If, further, p is a positive integer or zero, we can recover 8.2(29).
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84, an of the Ce wn the
Expansion of a Given Functmn £{x) 1 Sertes of Jacobs Polynomals

841 Tue ComFiciEnTs AS AN INTEGRAL TrRANSFORM

We suppose throughout that « > —1, 8> —1 From 8 3(1,2), we
have formally at least

fix) = ¥, aPE (=) m
k3
eam 7 [ SKE ~ (8 + oYPE s o
o
VWhena = f,a = —2_ an znalysis of 2pproximations for ¢, , which
follow from {2) by app of two ! type rules of

15 gnen m 8 54 In parucular, see the remarks followng 8 5 4(11)
From (2) and 8 2(7) weget

a= LB fo Zt - et + 2Py ®

and after mtegrating (3) by parts » times, 1t foliows that

a=CRBL fos -y v oy 0

We note that (4) s 2 beta transforrn Thus of f{x) 1s 2 member of the
bypergeometrsc famuly, so also 1 £, as readily follows from (4), 3 4 (1),
and 3 6(10) Lakewise, 1f f(x) 1s 2 G function, then ¢, 1s also a G-function
1n view of 5 6 4(10) Other types of transforms are useful to identrfy c,
In this connectron the references noted at the end of 3 2 are pertmnent

For 2 general dlustration, suppose

1 = [ #x gt ®
Hr )= 3 bl P s ®
2

Combune (5) 2nd {6}, interchange the order of integration and summation
(which we assume 1s valid), and compare with (1) to get

o= f:b,.(f)g(t) dr (U]
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Observe that both f(x) and ¢, are from the same family of transforms.
Thus if f(x) is defined by (5) and the kernel of the transform has a
known expansion in series of Jacobi polynomials, then ¢, is defined by

a like transform with kernel b,(1).

For a more concrete but still general example, suppose f(x) is the

Laplace transform of a known function g(¢). Thus,
fsy = [ e=ig(r) at.
0
Now it can be shown that [see 9.3.2(2) and 9.3.3(7)]

o (—)"Q,], 1)
e—zl — Z ( ) t1;+1;-;-:+l/2( )an .u)(x)’ —1 < x < 1,
n=0

@) + & + 3) T + 20 + 1)

- —1
On = 220 (n 4+ o+ 1) ’ =y
Q. =mle/(Dn, €a=1, =2 if n>0, when a«= —1.
Thus,

G = (1 [ 1N nlt) 1) d,
which is a Hankel transform, see Erdélyi et al. (1954). We write

HEW, 5.9 = [“FO Lon(tpe .

Then
e = £, explin(n — « — 1)/2]) sP{g(t)/tot), i7/2, 0 4+ o 4 1}.

The case a = — % is important for the applications. Thus with

) = ioanr,,(x),

and f(x) also given by (8), then
ay = €, explin(n — 3)[2] H{g(t)/117, einl2, u).

For expansions in series of the “shifted” polynomials, suppose
o«

f) =Y a,R&(x),

n=0

) = [ evgteyae

®

®

(10)

an

(12)

(13)

(14)

(15)

(16)
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Since
Z {300 F“;Y nsasy (/2 R, n
we find

o= 20y, [T Chiadleliy,

a8
2, = 20, explim(n — a — 1)/2] HYfe-tgOltH, e, 7 + a -+ 1}
In particutar, with {16) and
9= § ez a9
2 = 2 explinn — D2} RPN, 81, 5 @

The formulations (8)(20) are due to Wimp (1961) For an apphication
of these results to In I'(z) and 1ts derwvatives, see 2 10 2
Next suppose that f(x) 1s defined as a Founter transform Let

£y = [ egterde = 56+ i) @
A= [Jemmpon, fo= [ om0

AR = ZC.P" ), Al = }:S.f*;“(x) (23
Then

Coan =0, Gy = (P2t 4 1,20 + a4+ ), @4
S =0 Spa = (P 1 L2+ B (29)

In particular, ustag (21}, 22}, « = —, and
A= T andd A= T Tt @
A P

we have

6 = (~Ved LGV 1, 20}, g = A-PFROOA LI (27)
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We next consider the situation where f(x) is defined by an inverse
Laplace transform. This approach is due to Elliott and Szekeres (1965).
Suppose

«©

f@) = Y aR(), (28)
g0 = [ e a 29)
or
c+ico
fw) = @iy [ emg(a) ds, (30)

where ¢ > 0 and c¢ lies to the right of all singularities of g(z). Then

. ctioo gzf2f  1e(2[2) g(z
a, = (2mi)0, [ - Ez7532“("“1//2) £() 4. G1)
Let
g = ¢ — pe¥, —m2 <0 L 7f2

and consider the locus of points L, = {| R(2) < ¢}. If

121_{2 23%(z) =0, =zonlkL,,

then
a, = sum of residues of Q"e:/zirz‘;/"g)’!igﬁz) £, (32)
Suppose now that
16) = 3, eaPlel(o €D

n=0

Then from (30), f(x) = 0 for x <O and the right-hand side of (30)
gives 4f(0) for = 0. To account for negative values of x, let us define

@) =J(), x>0 A =f@), x<0
=1f(0), x=0} and =1f(0), x=of, (34)
=0, x<0 =0, x>0

so that for all real x,

Jx) = () + fl). (33)
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an=[lemos ap =[N0 o9

o= @i [T et s, &)
eation
Sl = @) [ eng(s) dz, x>0
e
(38)

=@ [ e 2 <0

Here ¢, > 0 and ¢, bes to the nght of all singulanues of g {2), 7 = 1,2
“Thus
ey ettt
)= @y ) ey a4 [T epten sl o9)
s et
and so

~egti= ]

= eare, | ‘: e DB 4 | | weelal Do) )

et

Again we remark that of f(z) can be expressed as a G-function, then
the same 1s true for £, In this instance see the materral in 56

842 Evawuamiov of tsE COmFricients wrps f{x) Is Dirmien
BY A TayLor SErtes

It 33 convenient to generalize and present work due to Frelds and
‘Wimp (1963) Let f{x) be analyuc at x = 0 and wnte
fla) = ¥ hats &= fU0 B )
in

Let g,{x) be a polynomual 1n x of degree n Then there eust constants
@y q such

x
=} o agale) @
b
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Combining (1) and (2), we have

fe) = io Cotnl), @)
Cn = i Uk.nfkwk' (4)

Note that if 6, ,, = O(1) uniformly in # as 2 — co, then most certainly (4)
converges if |w]| is less than the radius of convergence of f(x).
Equation (3) is called the basic series for f(wx) corresponding to the
set of functions {g,(x)}. For a general discussion of basic series, see the
work of Boas and Buck (1958). Here we consider the basic series where
ga(%) is either the extended Jacobi polynomial

—m,n A

Gl ) = g (T
q

%) )

or its confluent form, the extended Laguerre polynomial

Gulx) = lim Gy(x/A, ) = puiFy (";a %o x). (6)
In the sequel, we use the notation
&
=3 0p.a(d) G, A),
n=0
flwx) = ¥ Cylw, d) Gylx, A),

n=0

Co(r }) = T, onn®) &', &= f(O)RL, (7

k=n

and if G,(x, ) is replaced by G,(x), we simply replace ;. ,(A) and
Cu(w, X) by oy , and C,(w), respectively.

The principal result of Fields and Wimp is as follows. Let none of
the quantities A 4- 1, o, , and p, be a negative integer or zero. Then

. — (=R)a2n + Do)
Lnld) = o (m+Xm+ A+ D)’ @

w — (’"")n‘“"(f’a)n - (n + Di(n +/’a) ¢ ™
Gl D) = G Mo & @ T2 £ Dl o)l ©
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and for the confluent case,

o= ‘—:f(’;‘.‘;;’* o)
Colay = L "fpu). Z (rt 1():(:_1;;:}:[5.”11)" ey

Note that m view of (8),

() (Aui2n +2) A
(c.,)i,%(,. e et R G

P

‘The proof 1s by 1nduction on p and ¢ using Laplace transform technques
When p=0, g=1, py =B+ 1, and A = a 4 £+ 1, (12) may be
deduced from the classical result § 2(30) Thus (12) 1s also true when
2 = ¢ =0 by confluence Suppose then that (12) is true for some
pand ¢ In (12) replace x by x#, multiply both sides of this equation by
et~ and apply 3 6(13) With an obvious change of notatton, we get (12)
with p replaced by p + | and the wduction en p 18 complete In the
above denvation we must suppose B(r) > 0, but this condition can be
relaxed by contimnty For the nduction on ¢, 1n {12) replace » by xft,
multiply both sides of this equatron by %" and take the mverse Laplace
transform, that 1s, use 3 6(19)

For the expansion of f(3) mn series of the shifted Jacobt polynomuals,
we have

Hox) = T, Sulw) B M), 3
I=3
n)m (5 4 B+ Dyln + Dplppno*
@ = G Bt )
When a = 8 = —{, that 1s, A = 0, we get the important expansian 1

sexies of stufted Chebysher polynormials of the fist kind ‘Thus,
flwx) = i A} THE), Ao} = i (@bt
& &
"5 (2o Dl Dibrae
400 =2 (%) E—"‘—&“—”ﬁ,“— nzl (19

In 2 simlar fashion, usmg 8 2(28), we can denve an expresston for
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f(wx) in series of the Jacobi polynomials P;#Y(x). The case « = B is of
particular interest. Thus from 8.2(29) and (3), (4), we find

o) = Y, Eyw) Paidx), =0 or e=1,

n=0

20 + ) () & (n+ 3+ aln + Dedpune

() = @1 F 204 L+ Qome 2 @n o+ 3+ okl (16)
where £, has the same meaning as in (1). For the case « = —3, we have
xf(@a®) = Y Fow) Tonedx), e=0 or e=1,
n=0
___ 9l-¢€ _2__ " e (11 + % + €)k(n + 1)k§k+nwk
Fofw) = 27 (5) D Ty e T (17)

Note that if e = 0, (17) and (15) coalesce when in the latter x is replaced
by 42 in view of 8.5.2(2).

The foregoing analysis may be used to derive expansions of hyper-
geometric functions in series of functions of the same kind. This inves-
tigation is deferred to Chapter IX where we employ a different point of
view to get some very general expansion formulas.

8.4.3. AsympToTIiC ESTIMATES OF THE COEFFICIENTS

As so much of our work bears on Chebyshev polynomials, in the
sequel we consider the coefficients in the expansion 8.4.1(1) with the
Jacobi polynomial replaced by T,(x), even though results could readily
be obtained for the more general situation.

Consider

=0+ T ane a=2[ 00 . g

= a =z ”

Lf:t C be a completely closed contour such that f(x) is analytic on and
within C. Further let the line segment —1 < x < 1 lie within C. By
Cauchy’s formula

f) = @) [_[fe)e — )] de. @
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So
"‘:—1?! s@ . 40 »f)m(:—x) %=
= e ®
1 view of 8 5 1(41,42) If
F=utw=coshy @=nt+if @
then
w¥cosh? ¢ + t¥sinha = 1, jz+ (2~ = ¥l =e=p )

‘Thus the latter equation generates an ellpse which we call E, with foct
at z = 1 and semaxes cosh a and smh «, respectriely Observe thataf
z=%x —~1Kx<1, then p=1 20d « =0 Iatraduce the trans-
formatson

F=0o (6}

This maps the exterior of the ellipse E, onto the extenior of the circle C,
of radius p with center at the ongin 1t the o-plane In (3), let C be this
arcle Then

amd J Lo+, P
(el S IMEVEE, o) = e 10N ®

sonc,

1f p* 15 that p whech mimmizes this bound, then with

S =det+ T aldy  ald) = fx) ~ Al
i
9

2M(p™) &
Ve — 0 ’
‘Tits proves that the expansion (1) converges 1o the domain m which
F(%) 18 analytic Clearly the rate of convergence depends on how large
an ellipse we can have 1n the complex plane without encountenng a
singulanty of f(x)

For another point of view, 1t follows from 8 5 1(38) that

e} < *>1

LT 70 oL
PR e T KA 4:) L

(10
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and this coupled with (2) gives

n—1

f(\') = ‘f})_co + Z Cka(x) + Sn—l(x)»

& =

1 3 Tasld) g T [ fe)ds
mfc(u—k) T & ) = f TN O R

To evaluate ¢;,, we need the residues due to the zeros of T,(2). Thus
with the notation of Lemma 1 of 8.5.4, we have

“=23 —T-—(k)%((’l Z Tfa) S (12)

a=1

If (12) is inserted in the expansion for f(x) in (11), then this representation
with ¢, replaced by d; when compared with the combination of
Theorems 1 and 2 of 8.5.4 gives a formulation for the remainder §,,_,(x).
In this connection, see also the work of Elliott (1965). If M is the
maximum of | f(2)| for z on C, then

30l < 55 || e s |

Now take z as in (4). Then | T,(2)}2 = sinh®ne, | ¥ — x| > cosh o — 1,
and the length of C does not exceed 27 cosh «. Hence,

M cosh e
sinh no(cosha — 1) °

[ 8na(¥)l < (13)
Notice that (9) and (13) are essentially the same when « is large if in
the latter 7 is replaced by # + 1, and if in the former p* is replaced by p.

When f(x) is entire, (8) furnishes a bound for ¢, . To achieve an
estimate of this coefficient for large k, we follow Elliott and Szekeres
(1965). The idea is to deform C in (3) such that it never passes through

the branch points & = 41, and then use the method of steepest descent.
Let

ot _ fE)ete

= by z = cosh p (14)
so that
o f (~) (& + coth ¢)
w'(3) = sinhg °’
f (z 2 l.k sinh 2¢ - cosh? ¢ -+ 1

'(z) = f(~ sinh? p (13)
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Let £ be a numbes such that w'(€) = O Thus fos & sufficiently large,
swh 8(f (Ef(E) ~ & &= coshd (16

Upon apphcation of the method of steepest descent, we have for %
sufBctently large

12 Rafig) et
TS anh £

an~ 2= expllir — hagot(O)  (17)
or 2 sum of such relations, one for each point £ which lies on the contour

In many considerations, use of (17) 18 bmuted since solution of the
transcendental equation for £ can be a fornudable task In numerous
suuations where (17) 1s applicable, the same and often better estimates
can be deduced directly from known closed form expressions for the
coefficients In dlustration, from 93 2(S),

(7)) ~ £ 2,

[CARCT t+na,+n
Bi=a Gowr "‘F"'(x+2n,b,+nl’)'

Pp<yg lzl<w, Juwi<m, p=g+i z2# jarg(l -2} <n,
A<agl (1)

Then for n sufficiently large, excellent estimates of B, follow from
73(7-9)

For estumates of the coeficents when f{x) has poles or branch points,
see Elltott (1964) There it 1s indicated how the results can be extended
t0 expanswns 10 sentes of the Jacobi polynomuals

p estimates of the coeffi of the exp for Whittaker
functions of argument zaw 10 senes of Chebyshev polynomials of the
first kand of argument 1fw have been studied by Nemeth {19652,b) and
G F Mller (1966) These results have been generalized by Wimp (1967)
[see 9 2(14-20))

8.5. Chebyshey Polynomals

851 Tue PouyNowists T,(x) anp U(z)

The Chebyshev polynamuals have already been noted 1n 8 1(29-32)
We have

e i TSI e L S D
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and it is readily shown that

Tn(x) = cos nb, Un(x) = cscOsin(n + 1) 6, x = cos . )
Also,
Top(sin 6) = (—)" cos 2n6, Tonsq(sin 8) = (—)*sin(2n 4+ 1) 6, (3)
. —)" cos(2n 1) 6 . "sin@2e +2)6
Ufoin@) = LD - gy (aing) = (ST )

Thus many identities involving the Chebyshev polynomials are
paraphrases of well-known trigonometric identities. We present a short
list of results as other identities may be deduced from 8.2. Hyper-
geometric representations and other properties are as follows:

rw = (T3 | = o (T ) ®)
To(x) = in [:i] (_b;:!(zln:kzk_)!l)! ()2, n=1,2,... (6)
Ton(v) = (=) o1y (ﬁg’ ! | -‘a) =ofy (—:; - xg)- g
Tou(¥) = Tp(25° — 1). (8)

2

Tana(s) = (—)@n + 1) oy (7 "+I|xe)=on1(“””;+1]1-::2). )

o
<

(D=1, T(—-1) = (=) Ton(0) = (- Tons(0) = 0. (10)

2Ts) = (<1 = L2 (1 = a2t 1y
(123 dﬁf\(‘) ‘dT"(‘) + 12T, (x) = 0. (12)
(1 — ) i%i‘_) = n[Tpy(x) — 2To(¥)]. (13)

If
w(x) = ATo(x) + BU(x),

where 4 and B are constants independent of n and x, then

Fuar(%) = 290(x) — ay(), n >0,

Tyx) = 2Tyfx) = w, Uy(x) = 22U(x) = 2x, 49
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Feara() = 222 — D yaalx) — Y2a-sl2) >0,
Tyfs) = (& — D) Tifx) = 24 — §,
U = (422 — 1) Upfe) = 4 — 1

Ienss(®) = 22— Bygmul®) —Fea ofx)y 2 >0,
Tyfx} = 22 — Y I(x) — Tlx) = (&5* — 3 yx) = 4% — 3,
Uyx) = 228 — 1) Uy(s) = 88 — 4

27(%) Tulx) = Tounlt) + Timoni()

22 ~ 1) Upofa) Unrs(®) = Tomsal#) = L (2]
2745) Upoaf®) = Unmi®) + Upmslt)y 2>
2703} U s} = Unpmes(s) = Up i3}y 2> m,
Tonfs) Un(s) = Unf) Tols) = Tofx) Unom o) w>m

Im 2]
= 2m 3 (5) Facal "0

14 = 27 3 () Tvmeni)

P
_?E(;) =41 T Tuals)
JT,.,,(x)

=@+ D) +20n+ 1) ): Tu(n)

B i 4 Tt + 4 T

dT, "
w2l 200 4 1) 5 Taals) + (@1 + 1) Topne)

T, nct
2D 0 F o) + o)+ 4t
)
R o

L S R

=2+ 1700 + E 7o) + 41000) + )]

{13

38
an
(18)
9}
0
@)

[¢2]

@

]

(25)

@6

@7

@8

29
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2T gu() S

N = AndT(x) + 8n Y. (% — E2) Top(w). (30)
dat k=1
" K n-1
o) — a0 +1)'Y, (3 — R+ 1+ ) o),
k=0
n> 1 ﬁdezl —o. @
2 n—1
xﬂz"‘,(_i) = 4n Z {202 — B* — (R 4+ D%} Topa(®). (32)
dx® k=0
» Elannnl®) :—1’:;1("') =2(2n +1) [n(n + 1) To(s) +2 3, (8 +n-k) Tzk(x)]- (33)
: k=1

xd_T__(‘_) =2n [(27:2— 1)To(x) + 2"2—1(2712 =2k = 1) Tyl) + (21 -1 )Tz,,(x)].

dx =
(39

s d*Top (%)

n—1
T = 2(2n 4+ 1) [Z (212 4 2n - 2k2 =2k — 1) Typy(x) + nTz,,ﬂ(x)],

k=0

n =l (35)

1
f (1 — 23 12T(x) Tpo(x) dx = O if m st
-1
=72 if m=n%0,

—7 i m=n=0. (3
[ (1= S RU(8) Upls) e = (/2 37
[ 59070 = VL) - To(5)) di = U3 (39)
PV, | l_l (€ — 9)I(1 — T () dy = 7Upo(y),  —1 <y <l (39)
P.Y. f_l (@ — )11 — N, () dv = —aT,(y), —1<y<l. (40)
j 1_1 (5 — ¥)(1 — 22 12T,(x) d = .:;1; , @1)

f_l (= — 2))(1 — U2, _y(x) dx = me—ne, n >0,

z=cosheg, €=z (z*-—1) (42)
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and the sign 1s chosen so that |e? | > 1

J iy GGt

[ teran =3 (B8 - BENL I L), woo

1., Ty(t)de = 4Ty(¥) + Tolo)] )

@+ [ V) dt = Toaae) = Tol®) @)

- Tonesl) Tox) Tyn-ofx}
[ ], Tetduds = g 38— oty + R D =

+—4—6(,E)_"—x)—, n>1,
T2 1 7 e = 370 + 1o
* Tl
fﬁj:T‘(u)dun{tg»_s,-ﬁA,_ﬁ(_"_) ‘;g‘) @)

o oo Tonaafs) Tonef)
| B I o Tl dudt = g +’3)22n T 0 r o ¥ AR =T

(=r2n -+ 1)
Tafn ¥ 1)

I § 1id it e 2T + T @
o

+ T n>0,

852 Tue Povvnomrars T¥(x) anp Uk(x)

The shifted Chebyshev polynomuals of the first and second kinds are
denoted by T¥(x) and Uf(), respectively We have the connecting
relations

T =T 02x— 1), Tx) = T2 + /2] (8]
Tol®) = T, 2)
Uy = U e~ 1), U = UM + 202} ]
Upix) = 22U “

Identities for the shufted polynomaals are readily denved from those of
the unshifted polynomals We omt further properties of Uf{x) For
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the applications, it is convenient to enumerate some relations involving

Yv;‘k(x) ' —n, n

THx) =oF ( ]1 —x) = (=R (T Z"!x)
TH1 —5) = (—)"T:(x)-
TH) =1,  THO) = (-)"
Trn(®) = 2(2x — 1) T5(x) — Th_y(%).

TH) Tal) . _ .
[iFCaprds =0 i mn

=&z f m=nz%0,

=7 if m=n=0.

=2 (M) 3 +2 3 (2 ) 7o

. o 2 O
X ‘T,T(.\') = 2 2m Z ( ;) Tl":x-{-m—kl(x)'
k=0
den(") n—1

dl = 8n I; T;;--H(x )

w 22n + 1) THE) + 4@2n + 1) ¥ TEE).
b=l

v T80 — 2 fyq73to) + T + T 720

el _ g, [%T*(\) + 5 THE) + 3T + 1T

=1

+ %T:J—I(-")] N nz2

2473 » dTX(3
e gri 4 i i, #2E0
4T n1
= TLanls) _ 1607y + 320 Z o — B Ti().
d: T"n+1(\)

— e = 16(2n + 1) Z (n —R)(n + 1 4 k) T (%)

k=0

(5)
(6)
™
®)

®

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)
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, .
<LIE g, [n’T;(x) 12 ¥ (- T
&

+ Y et -8 G 1 )] a8
P

L) —gn i [ L2 1000+ F 080 - ) Tt

+ .f (r—Hkn+1-+5k T,‘,ﬂ(x)] (19)
=
Lere : * kS N
2 =2 l(4n — DT +2 ¥ @0 — B) — 1} T
d k=l
+@n- 1) T5(x) 4+ 4 }: 2 -8 (R O T ,,,(x)]
20
M,,.,(x)

=+ 1)[4n(n + )T +8 ): (& +n — B T(x}

+22(4n +4n 4R -4k - ) T; ,,,(,)+2.,Tm,(,)]
n

1773, Tins —r
J"T‘m.i: FIReess ‘(’;) "'_“(:‘) »2——(’(,,1“ =023

f' T de = YT3x) ~ To(x)) J’: Tty dt = 4T3 + r;(&;
)

weel(x) Tax) . (%)
[ moma - o e oy e
(VT (ITE
BTk T
[ rem aua = 12 = ABTI) + 4776 + T30 @

{70 dude = 2872 - 977 + TN

f f: T3() dudt = [ ~9THx) — 16TH(x) ~ BTF) + 73(=))
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8.5.3. MiniMax PrROPERTIES AND COMPARISON WITH THE
TRUNCATED MEAN SQUARE APPROXIMATION

Let f(x) and s(x) be real and continuous in [a, 5] and consider

Opl) = ELE) iy~ Faw, p = Thet ()
() k=0 ¥=0
where m and #n are given. The problem proposed by Chebyshev is that
of finding real numbers g;, and b, so that the maximum deviation of
O, m(x) from f(x) is least. Such an approximation is called best in the
Chebyshev sense. We discuss very briefly only the special case s(x) = 1
and m = 0. For the general case, related topics, and further con-
siderations of the special case just noted, see Akhiezer (1956), Walsh
(1960), Todd (1962), P. J. Davis (1963), J. R. Rice (1964), Meinardus
(1964), Cheney (1966), and Handscomb (1966).
A striking feature of the Chebyshev polynomial T,(x) is manifested
by the following.

Theorem 1. Of all polynomials of degree n with leading coefficient unity,
that which deviates least from zero in [—1, 1] is the Chebyshev polynomial
20T (x).

PROOF. Let g,(x) be given as in (1) with gy = 1. Let

v(gn) = | ga(®)}

1< <1

Then we want to prove that »(g,) 2> 2~ and equality obtains if and only
if gu(x) = T,(x). Suppose the theorem is false. Then there is a poly-
nomial with leading coefficient unity, call it g} (x), such that v(g}) < 21-n,
Put

r(x) = g¥(x) — 27T (%),

which is a polynomial of degree (» — I). It cannot vanish identically,
for if it did, we would have gi(x) = 27T, (x), whence »(g}) = 217,
which contradicts our assumption. It is clear from 8.5.1(2) that

Tolxg) = (—)5, xg =coswffn, B =0,M1,..,n,
| () < 1, —-1<x<£ 1.

Now consider the values of r(x) at the points xp . Since | gf(x)] < 21-n,
sign[r(xg)] = (—)B. It follows that r(x) must vanish between x; and
¥ps - That is, r(x) must vanish » times in [—1, 1]. But this is impossible
since 7(x) is a polynomial of degree (m — 1). Thus r(x) must vanish
identically and the theorem follows.
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Some further theorems pol Is of best app
1n the Chebyshev sense 1o a continuous function follow For proof, see
the references already noted

Theorem 2. If f(x) 1 contsnuous 1n [a, 8], then there exssts a polynomal
of degree m, D,(#), such that

E(f) = goax [f(x) — Ou)l < max, 1f(x) — ry(x)l

2%, PN
Jor any ryfx) # Qu(x) Qa(x) 15 called the best approximation of degree n

Theorem 3. Thereare(n + 2)pomtsa < xp <5 < < %, < ¥y Kb
such that

1fG) = Oulxl = E(f), #=0,1, 2+,

and f(x)) — (%) alternates msign fore = 0,1, ,n+ 1
Theorem d. I there exist (n + 2) ponts

A < L <y K SO
such that

fE)—rfay =w,  1=01, 241,

where the o, alternate m agn, then

ELNyzmn(leoh tels o jwaat)
Further, 1f

o= max ftx) —rdm)l ¢ =0L ,nti,

ther rof) = 0uf3)

Theorem 5. If O,(x) s the best polynomual approxemation to f(z} of
degree m, then
S0 = 0ul) = @Trals), @ = mas, 102) — Qulo)

Only m a few cases 1t 1s possible to obtam O, (x) in closed form
In this connection, see Rivim (1962), whose work mcludes thav of
Bernstein (1926), Homecker (1958), and Talbot (1962) as specral cases
S W Mémezer (1Y56, p 64) for an exampie of (1) with m = n
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Algorithms for the computation of Q, ,,(x) have been studied by many
authors. See, for example, the references cited following (1). The
algorithms are, in general, not finite and numerical values of the pertinent
parameters are produced by iterative processes.

Next we turn to some results which enable us to compare the best
approximation in the Chebyshev sense with the truncated mean square
approximation, each with the same number of terms and over the same
interval [—1, 1]. Let

f@) = T @), fule) = 3 aTuw),

k=0 k=0

=]

sn(x) =f(&') _fn(x) = Z aka(x): (2)

k=n41

@

S, = _max _|s(x)| < Z Iak|=S,’,k.

—lsz<1 k=nt1

Let O, (x) be the best polynomial approximation of degree n to f(x) in
—1 <x<1. Let

E, = max |f(x) — On(x)l. 3)
—1<z<
Theorem 6.
AngEn<Sn< Z |ak|=S:r (4)
k=n+1

where A, is any one of the values

o

172
~1/2 — 9= —_
Apy =27V ( Z “kz) v Ape =2 a5, Aoy =

k=n+l

0

Z (k1) (n+1)
k=1
%

3

and if the a)’s are nonnegative, we can replace A, 3 by a,, . .

PROOF. Note that E, < S, follows from Theorem 2. The inequality
involving 4, follows from that involving 4, ;, so it is sufficient to
consider the latter. From Theorem 1 of 8.1,

[ g [ U =0,

o (1 —anie (1 —am)r2

Now the integral on the right cannot exceed #E,2 and the integral on
the left is easily evaluated using the orthogonality properties of T, ().
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Thus the stated inequality readily emerges The weaker mequahty with
2 1210 A, y replaced by /4 has been proved by Blum snd Curtis (1961)

The wnequality 1ovolrng 4, 3 15 2 classic result due to de la Vallee
Poussin (1952) Let us wnite

F = H{f(c0s ps) — Qalcos ga)} cos(m + 1) g
A+ ({005 Pnsa) ~ Onf00s Fra)} c05(% + o]

+ 5 {flcos 23~ Dufeon g costn + 1y
)

whereg, = wnf(n + 1), 2 = 0,1, ,n+ 1 Clearly |F| <(n+ D E,
Now let

Oufeos ) == 3 by con by,
P2

From 8 54(7), F = 0 when f(x) = 0 Thus, F = k.0 @V as1» Where
Vi aer 18 given by 8 54(7) (There replace j, kand n by K, n + 1 and
n + 1, respectively ) In view of 8 5 4(8), V, ., 1s zero unless k1s an odd
muluple of n + 1, in which event 1t has the value n +1 So F=
n+ D EF 100 piarp 2and the result readily follows This completes
the proof of Theorem 6

Given the coefficrents 1n the Chebyshev expansion for f() as 1n (2),
the best approximation n the Chebysbev sense can aften be determuned
by use of formulas due 1o Hornecker {1958) However, the gam
accuracy 1s usually slight For a numerical illustration, see Clenshaw
(1962) Tn particular, for the expansion of ,Ffa, , b, , #w) [see 8 4 3(18)]
the results 7 }(7-9) show that for # sufficrently large, 4,5 15 very near
to | Ansa i and ! n,‘q {15 2 good ap to S} Inthe 2pp
the in senes of Chebyshey

polynonuals whnch we give m Chapter XVII, we sce that 4, 5 1s indeed
extrernely close to {a,,; | and S¥* seldom exceeds 2\ a,,| for n
sufficiently large

It 1s pertinent to discuss some further aspects of the relative merits of
the best approximation in the Chebyshev sense, (,(x), and the bestin
the mean square sense, f,(x) As previously remarked, 0,(x) 1s known
m closed form for very few functions In general, finute algonthms are
not known and one must use sterative processes Here a rather extensive
table of f{x) must be available In general, there 1s no known connectton
between Q,(x) for the mtcnal [a b] and Q,(x) for the wterval ¢, d]
For many speeral funcy physics, the
which define f,(x) are readﬂy expressed m closed form and are easily
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determined by use of recursion formulas, see Chapters IX and XII.
For the most part, we need not postulate the existence of a mathematical
table for f(x). Further, the approximations f,(x) are much like that of a
Taylor series in that if we are given f,(x) and desire greater accuracy,
we need only add more terms.

8.5.4. ORTHOGONALITY PROPERTIES OF CHEBYSHEV POLYNOMIALS
WITH RESPECT TO SUMMATION

We first prove the following

Lemma 1. Let
Ty(x,) = cos nf, = 0,
%, =cos b, 8, = (#2m)(2x + 1), a=0,1,.,n—1,
n-—1 n—1

Usp = Y, Tix,) Tilx,) = Y. cos jb, cos k6, .

a=0 a=0

Then
Up=0 i jik<n j#£k,
=nf2 if j=k 0<j<n,
=n f j=k=0. )
We also have some further properties of U,, . For convenience put
m=j4k p=1\j—k| and let s and t be positive integers. Then
Vo= (=)n  if j =2um,
=0 if j 5= 2sm.
Upj=n if j = 2sn,
=12 if j # s,
= ifj=Q2s+ I)n
Ui =0 if j £k m 2, p# 2n, (2)
= if j %k m=2mn, p=2in, and s and t are both even,
= —n tf j %k, m = 2sn, p = 2tn, and s and t are both odd,
=0 if j %=k, m =2, p = 2n, and s and t are of opposite parity,
=(=)nf2 if j %k, m=2m, p+ 2n,
=(=Ynj2 ifj#=k m+#2mn p=2n



308 Vit ORTHOGONAL POLYNOMIALS

PROOF  We prove only (1) The result s tanalif g = & = 0 Now

Uin = J(E o+ 0.+ o -2

R

*iﬂ[ﬁp{ ) Zew

=1R(4% T+ 4,
a2 — §
el g2 g

Note that f j=k, 0 <j<m =0, and 4, =5 Thus for this
assignment of y and k or 1f 5, k << m, ; # k, 1t 15 sufficrent to prove that
R(A,) = 0 Now (dropping subscripts)

t"(r""- 1Ycos 2p — 1 — s 25)
() — eos2¢)

Clearly mf2n < 1and so [ — cos 29 # 0 A straightforward computation
shows that

R(A) = %-Ltﬁis(cmmew +snpsmlp — cosg) =0,
which completes the proof of (1)

Next we establish the following expansion formula

Theorem 1. If f,(x) 1r an approximation to f(x),
Mest) =1+ S sk o L) = Mo 3 AT
& P
then
4= @)Y fleosyconkt, = @) T f5) Tufe) ®
X EX

PROOF  In f,(cos 6) replace 8 by #, , muluply this equation by cos 4,
2nd sum o o from 0 to {n — 1) The desired result follows from (1)
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We can use our developments to get a formula for the error in this
approximation process. We suppose that f'(x) is continuous in [—1, 1]
except for a finite number of bounded jumps. Then from Theorems 1
and 2 of 8.3, f(x) can be expanded in a convergent series as

f(x) = ¢ + i xTa(x),

k=1

=) [ ST 5o (o [ o flcosf)coshBdE.  (4)

1 (] —_ x2)112

We first obtain a connection between the d,’s and the ¢;’s. Thus combine
dy. as in (3) with f(x) above and use (1), (2) to get

Lemma 2.

do =€y + 2 Z (_')rczrn

r=1

dp = ¢+ Z (=) earnr + z (—)Carnsr » k=1,2,.,n— 1L &)
r=1 =1

Theorem 2. If
en(®) = f%) — ful),
where f(x) and f,(x) are given by (4) and (3), respectively, then

2n—1

€x(cos 0) = cos nf %c" + 2 Y Cuyrc0s 78 -+ g, coOS 20
r=1

2n-1

— sin 216 {ca,, sinnf +2 Y cynypsin(n + r)8 + g, sin 31102
r=1
(6)
2n—1
+ cos 3uf ics,, cos 2nf - 2 Z Csnir €OS(20 - 7)8+ ¢, cOs 4710;— e,
r=1

€;(cos 8,) = 0,

€n(cos 8) ~ ccos n0[1 -+ (2¢,,4/c,,) cos 6].

REMARK. See the comments after 8.4.3(12).
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PROCF  Farm e,{x) and use (5) Then
fcos ) = 2' aT) ~1 g e

+ ):: Cquelcos( + 118 + cos(n — 1)6}
+ "g:c,...(cus(u +7)8 + cos 16}

+ E:t;m(cnﬁ(ln +7)8 — cos{n — )8}
+ z::.m(cusw + 7)8 — cos 18}

+ E!sw(cos(ﬁ +7)6 + cos(n — )6}
+ j);:t.m(ms(en + )0 dcosrdi 4,

and the desired result follows upon using 2n elementary sdents
Obviously 1n (3) we restrict x so that —1 <z < 1 Observe that
each #, lies 1n the sntertor of this interval In numerous applications, it1s
useful to have a2 curve fit which uses the end pownt x = 31 and the
pounts Whlch ke rudway between the powts 4, Here agun the
Ch Js possess an orth lity property which leads
to an cxpznsmn formula based on the abscissas just named We state
Jemmas and theorems analogous to those above Proofs are omatted

Lemma 3. Let
X, =cosg, g =amfn, «=01, ,n

Vi = U i) + T Telmal} + B, 7o) Tae)
&

w1

= s ypy TS Ry -+ 008 5 08 Ry - D, €08, 008 Ry
=1
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Then

Vi.kz if ]’k <=, ]#k:
=mnf2 if j=k 0<j<n,
=n if j=k=0 orj=k=n

311

(7

Some further values of V; ;. follow. It is convenient to put m = j + &,

p = |j— k|, and let s and ¢ be positive integers. Then

Vig=n if j==2sm,
:0 if j#an.
Vi;=n if 750, j#mn  j=sm,

=nf2 if j#£0, j#n  jFEsm
Vi =0 if j#k m#*2m pF2n
if js£k, m=2m, p=2n,
nf2 if j£k m=2mn, pF#2n,
=nf2 if j#k mz=2m p=2n

Il
2

Theorem 3. If f,(x) is an approximation to f(x),

-1
fulcos @) = 1&g + Y e, cos ko + de, cos np

=1
or
Fuld) = ey + "il eTu(x) + dea o),

then

ey = % [f(l) =+ (;")’:f('—l) + :;f(cos ‘Pa) cos k?’a],
or

o = '2_1 [f(l) + (;)Lf("l) + ”glf(x“) Tk(x‘,)].
Lemma 4.

© ©
€ = ¢y + 2 Z Corn » en = ch + 2 Z Cler+1)n »
=1

r=1

© o
e =0+ Y Corner + 2. Cornsrr R=12,n—1L
r=1 r=1

(8)

®

(10)
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Theorem 4 If
8u(x) = fx) — Juleh
where f(x) and f,(x) are gruen by (4) and (9), respectively, then

S(co3 @) = —26107p 3 Core S0 19,
~

8,(cos9,) =0, ty
Bfcos g) ~ ~2sm npn g crea [1 + Zenry o5 o]
fnr

I ¢4 1n (4) 15 evaluated Iy by the trapezodal rule, then g,
18 4n approximation to ¢; and (10) may be nterpreted as the error n
thes process Stmilaly, if ¢ 15 evaluated by what we call the modified
trapezordal rule, that 1s, of ¢ 15 approximated by d, [see (3)}, then (5)
may be mterpreted as the error in this numerical mtegratron scheme
Note that 4(d, -+ €,)1s an 1mproved approximation fos ¢, k = 0,1, , 7

T che abave, we dealt with expansions 1 series of T,(s) We now give
without proof anal for exp 10 sertes of C
polynomials of the second kind U, (x)

Lemma 5. Let

sintn + D6,
T b,

mo=esd, G=Z@4l)  «=01L n-l,

Unfa} =

ot et
Wik =¥ (0~ %8 V(%) Ug 4fx) = 3, stn s, sm kO,
=3 =~

Then
Wi=0  f ph<n 3%k
=n2 o g=k O0<z<n,
=0 f 1=0 forallkorifk =0forally i)
Some further properties of I¥; , and alsa of X, , [see (18)] ike (2) and (8)
can be deduced, but we omt detarls

Theorem 5. If f,(x) 15 an approximation to f (x),

n1 P
ffeosf) = ¥ guankf  or  f(e) = (1 — )2 z‘ Uz (%)
= =
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then
gl n-1
g == Z f(cos 8,) sin &8, = 2 Z (1 — 212 f(w,) Ura(®a)- (13)

Again we suppose that f'(x) is defined as in the discussion surrounding (4).
Then

f6) = (1 =02 Y. pUy(s) = 3. pesin A6,
k=1

k=1

2 2 ¢ .
pe=2] S Uy dv =2 | J(cos 0) sin k0 d6. (14)
Lemma 6.

Z ( )pan—J + Z ( )P2nr+1 ’ ] =1,2,.,n—1 (15)

r=1

Theorem 6. If
(%) = f(x) — ful®)
where f(x) and f,(x) are given by (14) and (13), respectively, then

€,(cos 0) = p, sinnf + 2cos nf 3 p,,,sin7b,

r=1

5n(c°5 b,) = (_)&Pn ’ (16)

€,(cos 8) ~ p, sin nf (1 + % cot nf sin 6).

n

Lemma 7. Let

X, == COS @, , Py = amfn, a=0,1,.,n,
n-1 n—1 Lo .
X =3 (1 = 22) Upsa(a) Uss) = X, sinjpysinkp,.  (17)
a=1 ==l

Then

‘Jl*“o l..f j,k<11, j%k)
=nf2 if j=Fk O<j<un,
=0 if =0 forallkorif k =0 for allj. (18)
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Theorem 7. If f,(x) 15 an approxsmation to f (),
o1 w1
Sloosgy = T nambkp o fifs) = (1~ P T nly(n)
= =
then
Pr=) Pr=3
n=3% fleospyombp, =2 T a2y Us ) (19)
= P=
Lemma 8
s .
f=0i= L Pres + L bmns @0
- -

Theorem 8 If
8(x) =f(9) — fulx)
where f{x) and f,(x) are gren by (14) and (19), respectively, then
3,(cos g} = pu s + 2smng i Pasrcoste
=
ufcosp) =0 2]

2o
Pa

Bafcos 9) ~ pasin 7 1+ 222 cos )

Note that (15) and (20} may be aterpreted as the error when g, w (14)
13 approximated by the modified trapezoidal rule and the trapezodal rule,
respectively See the comments foflowing {11} Also ¥{gx + 73) 15 an
improved approximation for p, k = 0,1, ,n

For some references pertment to the matenal of this section, see
von Sanden (1959), Zucmuhl (1964), Eltott (1965), and Cooper (1967)

86 Differential and Integral Properties of Expansions
Series of Chebyshey Polynomials of the First Kind

Advantages of expansions tn senes of the Chebyshev polynomuals
T,(x) have been discussed 1n 8 53 Further, i 8 7 we show that the
sum of a truncated expansion 1n serses of Chebyshev polynomuals can
be evaluated i1 much the same fashion as one computes 2n ordinary
polynomial Now given the coefficzents 1n the expansion for f(x) o
series of the shifted polynomuals TH(x), ene can readily obtaw the
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coefficients in the corresponding expansions for [ f(x) — f(0)]/x, [o f(2) dt,
[s £3f(2) dt, etc. Such formulas, and others which follow from the material
in 8.5.1 and 8.5.2, are developed in 8.6.1. In 8.6.1(10), we prove that
the pertinent coefficients may be computed by use of a backward
recursion scheme. Similar results for expansions in series of the even and
odd Chebyshev polynomials T,,(x) and T, ,,(x), respectively, are taken
up in 8.6.2 and 8.6.3, respectively.

We assume throughout that f(x) is restricted to insure that all
expansions are valid (see 8.3).
8.6.1. SEries OF SHIFTED CHEBYSHEV POLYNOMIALS

We suppose that
flx) = ZobﬂTi’,‘(x)- 1

Throughout this section, as well as in 8.6.2 and 8.6.3, we use the notation
=1 =2 if n>0. )
If f(0) = O, then

f6) = ¥ 6,736,

¢, = 2¢, Z (—)k + 1) byynsa »
=0

by = 3¢y + ¢y, b, = 3o + 3ey + dea,
by = Henq + 260 + cnia)s n=2,3,...,

S ()b, = 0. )

k=0
() = 4 (2B, - by) TH) + (28, + 28, + ) T(¥)

+ By + 2y + by T @)

k=2
¥f(x) = 5 |(6, + 4b, + by) TH(x) + (8 -+ Tb, + 4b, -+ b) TH(x)

+ (2b, + 4b, + 6b, -+ by + b,) TH()

+ 2 (byy + by, + 6b, +4b,,, + b ) T &)

k=3
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S =T a T,
Pt

4y =265 (3 + 26+ Dbamrat,
5
U jey = days + 45+ Do ©
[roa =13 ,L;;WQ 5. ) 1) + 1028, ~ 9 T30)
+1 Z Gra = b .u) TAx) m
0 =1,

[ —nya = 5 4120,
v =1

. .
da=-b,+2(~)‘!2):k‘+n’b,,
5 2 =
4~=-~‘+£—l— ): P =12,
g b b ot
s = e g Bl =01,

®)

3b 12 19b
[ g =g ;_n tpTw ot} ; = l)(k'—4) s T3x)
2y — b TI(x) + Fel2by + 25,

lﬁ g ;&ﬁ%:&:’&i T2

+ sl + b — — by~ ) T3(x)
®
¥ £(0) # 0,
r eof(r)de = xet i e, Ta(x),
0 el

—nty A+ 2p 1) =2by ~ by,
{1 — wewy + (8t g+ 1w = by — by,

RG> —1,

$0)
n=1,23, , o
E(*)"ﬁ- =f(0), n);ﬂ (=Y =fO)+ 1)
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This is essentially a generalization of (9). The restriction f(0) 5= 0 is not
essential. For if f(0) = 0, but f'(0) = 0, then from (3), f(x) = ah(x),
I(x) = Tu-o ¢, Th(x). Thus apply (10) with f(x) and p replaced by /i(x)
and p + 1, respectively.

It is of interest to develop a convenient procedure for the evaluation
of the e,’s. We first suppose that p is not a positive integer. Write

(n—¢) (bn — basy)
(N} — — (N) — "N,
‘n 7l+}1+1 ﬂ+l+12+}b+1 n 1)2y- N (11)
e;t'h-’i-)k = 0 k= 17 2: 31"- .
Thus we can evaluate e{'p for k=0, 1,. — 1 most easily by

recursion. The closed form formula

(YW == ey

W = () = 7
“A\-l ( ) ,Z:o (Ar 1 w— E + 1)L+1—r N-r N_’-_l)) k O, I,-.-y]\ 1,
(12)
is also available. We prove that
e, =lime®™,  n=123.. (13)

N-x

For the proof, we first note from the difference equation for e, given
in (10) that
— ) + 2 n
oy = e Hpy + Pryy s Hyy = L‘(l]—(ET") ’

— (_)"H(F" -+ 2),, = (_*)m(l - ‘u.),.,, _
PIX-H. - (I*L + 2)(1 I P')n = ([.L + 3)m (bm+1 bm+2)' (14)

Thus H,,, and P,,, are the homogeneous and particular solutions of

this difference equation, respectively. The solution of (11) is of the
form

ey =oH, + P, (15)
where « is a constant. Since e{?; = 0, « is determined and
eN) = __EN_*‘LH"_;_]J",
N+1
Now
Py 1 (=)"Gmrs — byl — 1)
g = hm P, 6 2 S, nt+1 m+2 m .
Vox o Hyy  op+2 ,Z’o (1 + 3)m
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But from (10),
Bnay = sy = (1 — ey + (Mt + Qe

and so

[£ 40052 1 = e

= (++3)

+2

g 70—
+ 5 ]

”‘"Z( )M(l‘)”m 1+X { (i:(_:_;)“)'”tm\:n

Thus
hms‘"'~zH + P, = =012, ,

it = O T = G

which was to be proved

If p 1s a posinve integer, say g = 3, the procedure must be shghtly

altered In this event, we have

(1~ lewuy + (1 + 5+ New = b, — by, =12 ,4
fenguay + 8+ 1t 2y = Bppe = bnsn m=12.3, ,
and from the former,

& »(")‘ s+ Z (--)'(—'2'I = 1),(,1._'

= — &) =12,
Now wnte
= 5 +(-,,W n=5L2 N,
e, =0 k=123 ,
and so evaluate ef?, . ey, »el¥) by recursion We alsa have
O L NI

Then we prove that

Ga=imedl,  2=133,

(16)
an

.
(13
9)

(20)

]
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The manner of proof is much akin to that for the case when g is not a
positive integer. Using (17), we get
H = (_)n(zs + 2)11

ensaes = Coprtlaty + By ntl n! ’
o _ ErHRs a4+ IS (—)mml _
P n+l T nl(2s - 2)! ":220 (25 +3), (bx+l+m bs+2+m)’

From (19), we have
ebt, = ol 4 Pl

where « is a constant which is readily determined since {3}, = 0. Thus,

(s)

P
(N) — _ N+ rr(e) (5)
es+N - H{s Hn +Pn ’
N+1

With the aid of (16) and (17), we find that

)

lim — At
(s)

Neo o HE,

= €511

which leads to the statement (21).

If
J.:f(t)(ln t)dt = Z a, TH(x) + (In x) Z gnT:(x),
n=0 n=0
then
b b 1 & (=),
0:.7"_%__52”%, & = 1(2b — by),
&n = (1/4n)(by_y — byi1)s n=273...,
_ hy h 1.&(=)h,
"0"“‘%'5‘“'8""2";,12—1’ (22)
a =g —2g,

by = 2¢, Y (—)(k + Dersnia s

k=0

b

a, = —(1/n) ig,, -2 ki (—Y8rinr
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b B S PR g
_-_%ﬁ_.i_?’:ai‘l;gn(x)

T e Y e £

4 Ay, + BT

& ( (k4 1)b,_, — 245, (k — 1) by,
+ﬁ§,3(““w~’x+)( Yo} 7ot

@
Let
A =S ara  BW=3ATHN O =3 T
P Z X
T
C{x) = A(x) B(x),
then

a=adyt d i‘a,.bm

o=+ ): ( nim bﬂ._«.:) a

-l

S (Onm . ineml
=ttt I (b, a0,
=1 =2 for axl 24
This result 15 also true 1f 10 A(x), B(x}, and C(x), TA(x) 1s replaced by
To(x) or Tisfx)

The above system of equations may be expressed in matnx form as
follows Let A = (si;) and B = (8,5} be nfimite matrices where

=80y = for 1=123, ,
oy = day for j =23,
= oy + b,y for 1=2,3, ,

25
o, = Hows 1+ Anan)

for j>1322,
61 =23, ,

=,



8.6. CHEBYSHEV POLYNOMIALS OF THE FIRST KIND

321

and where (25) is also valid if a; , «; , and o are replaced by &, , B; , and

Bis» respectively. Let «, B, and y stand for the infinite vectors

oy B "1
— | %2 — Ba — {7
[+ ’ .B ﬂ.a y Y 7{3
Then
AB = Bu ==

8.6.2. Series oF CHEBYSHEV PoLYNOMIALS OF EVEN ORDER

In this section we suppose that

flx) = Z by Ton(®)-

(26)

27)

(1)

Again we make use of the notation 8.6.1(2). Some of the results of this
section are essentially restatements of results in 8.6.1 since T3 (x?) =

Te,(x). For example, if f(0) = 0, then

o

f(x) = x'.’. Z CnT2n(x),

n=0

where ¢, is given by 8.6.1(3).

v =5 ¥ (2

1e=0 €n

&f(x) = 3(2bg + by) To(x) + 2(2bo + 2b; + by) To(x)

+ bn+1) Tynsa(%).

+3 Z (bu1 + 26y + brya) Ton().

n=2

[+

F@) =3 dTonx), di=4Y (m+k+1)byypy,

n=0 k=0

dy = dyyy + 4 + 1) by -

[10rd =~ 1) 70 +5 ¥ Cotend 7,

2n 1

n=1

2)

©)]

(4)

©)

(6)
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o[ e =3 aTula,
E Z

b, -
=577 FAYa .z:

[N
AR 1

o=t Tl i
o = —22 + 2y~ by
Hf0) = 1, then
. .
[lex ~fopoe = 3, Tl
. &
o= i(')'brg"21+—l—‘,
L ER Y
b,
i a i I Y e
Wa_, By —b, _
A St ra i =123,

Fern=t  Tra=o
A P

rf/(t)dt-~[ba~-"“2( Lo 1) + 400~ 00 )

1 b g

.5

[iremtd = 5 aTusts) +105 5 giTmnte
P

PR N TP (b ;_:'l")

=12,

& 2 @
=TT T T g Ve

=TT S zw:m.
4

(U]

®)

®

(10
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so that
£ z?
[ reyde = [ ro-vefe) a, (11)
0 [
since T¥(x%) = T,,(x). Then evaluation of the integral on the left

follows from 8.6.1(10) if there we replace b, , p, and » by b, , 1(v — 1),
and 2%, respectively.

f’ j ' f)dudt = %[ 3b1 + Z (~ )_b ]To(x)-l— 2[6by — 4by + by} To(x)
070

[(Cr + 1) by y —4nb, + (28 — 1) 8]
Z n(4nt — 1) Ton(®)-

= (12)
z ot 1T5& b b (— ) b, ]
dudt = =2 2L _ _2 —
2] 4[2 : 3 L2
+ g5[dby — by — 2b, + b;] Ty(x)
[((n + 1){bpy — bpp} — n{bn — bnia}] T,
'Z:z n(n + 1)(2n + 1) "“(x()w)
8.6.3. Series oF CHEBYSHEV PoLyNomiaLs oF Opp ORDER
We suppose throughout that
f&) = Zo b Tonsa(%). (1)
The notation of 8.6.1(2) is again used. If
f(x) =X Z CnT2n(x)’
n=0
then
Calen + denyq = by, Cn = € Z (—=Ybasr »
k=0
2 (=rRe Db, =Y (—)en- 2

n=0 n=0

S = BoTo®) + 3 Y. (buy + by) Tonls): 3

n=1
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) = by YT + 1 5. (oce + 2o F o) o)
f=FaTue  dimad @24 Db,
A 2
oy =22 220 4 )8,
f/(:m:-gb.—# ):Lw 41 z (”--- Bea=bd 7
[0 = 3, Tl
. L
IR 2 &
ST T T ET & O e

Frr+ 18 = T (~yn+ Iy,
P P2

[roa-S38lnm e, § bt g iy

g = AT, (D=5 N}  f=1Y T
= =
where the ¢,'s are found from (2) with b, replaced by d, Then

j: oty dt f:: () dt

@

&)

©)

Y]

@)

®

and evaluation of the integral on the left follows from 8 6 1(10) of there we

replace b, , u, and £ by 3¢, , v, and #?, respectively

A7) = [ frin et = [ tnt T exTult) d
@)= [ 1= [ 1ins T aTud
where c, 15 defined 1 (2) Replace # by =12 and x by 372 So

A(y)4—f .'mzcr'f).ﬁ
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which can be evaluated with the aid of 8.6.1(22). Indeed, if we now write

flx) = i B, Tona(v),

n=0

Ax) =1 io aaTen() + 3(1n ) iogun,.(xx

a_a lye  q—Bt23(-rs.,
2452 n—1 =

g = 5_1;(19,,_1 —B), =23
O E P w0
I =26 3 (=FCk + Deunes

o =g —28, a,=—(1/n) ign -2 gﬂ (—)‘gk+n+1§, n=2,3,..,

where ¢, is defined in (2) with b, replaced by B,, .

J: J; F() dudt = %[L PR )n((if; -'rl )l)bn} Ty(x)

n=2

[+ 1) b,y — (2n + 1) b, + nb, 4]
8 z nin 4+ 1)2n + 1) Tonya().

ns==]

8.7. A Nesting Procedure for the Computation of Expansions
in Series of Functions Where the Functions Satisfy
Linear Finite Difference Equations

Suppose we have to evaluate

N
fN(x) = Z an‘\:n:

n=0

an approximation to

fla) = i agam,

n=0

(11)

(1

2
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Here our functions are the Is x* Define the backward

scheme

B.=ay, + 2By,

=NN—1 1,0, Byy= [©)
We then get the well known result
Ix(=) =B @

It 1s of interest to examme the effect of a round-off error in a, when
evaluating fy(x) 1n this manner We note that the general solutton of

Uy = A+ Mgy &)
w1

Uy e — Y gyt ©
i

where « 15 a constant Thus 2 rounding error §, 10 2, ot B, produces an
error e{n)n B, for s < n given by

-
o) = art — 2~ ¥ Bxt )
“
Abso
P
0= arn gt Y St @®
=

‘We can solve the latter for « and so find
) =50 ¥ bt ©®
&

The error tn f(x) 1s () with s == 0, which 15 exactly that produced by an
etzor 8, n @, when the series 1s summed 1n the usual fashion Thus,
if B, i3 rounded 1o the same number of places as g, , the mamum
rounding error in fy(x) 15 only doubled If one or two guard umits are
retaned 1n a, or B, , this error may be made neghgible when compared
with the truncation error due to the approximanon of f(x) by fu(x)
The above analysis shows that although the error in B, may become
quite large when IV 1s large, the error 1n f,(x) 1s the same as that abtatned.
if we form the required powers of x and sum according 1o (1) The

of f{x) by the back d scheme requires only
N additions and N multiplications  An alternative methad for the com-
putation of f(x} 1s to use (1) where the peeded powers of x are obtained
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by recurrence from " = x - x"~1. This approach requires (2N — 1)
multiplications and N additions and so is not as economical as the
backward recursion scheme.

To generalize the preceding results, let

Tu(x) = LZO a pr(x),
PH—H('Y) + “n?n(-“") + ﬁnf’n—l(x) = O’ n 2 11 (10)

where «, and B, may depend on both n and x. Here p;(x) need not be a
polynomial. Consider the backward recursion system

B, = —a,Bpyy — BrnaaBrie + ay, n=N, N—1,..,10,
By, = By, = 0. (11)

Then

Su(x) = Bopo(x) + Bifps(x) + eopo(x)}. (12)
This is easily proved by solving for a, from (11), substituting in f,(x)
and using the recurrence formula in (10). The extension of this principle

to the case where the sequence {p,(x)} satisfies a higher order difference
equation is direct. Suppose

Prsa(¥) + @ oPul¥) + CnyPuaa() + 0 + & rPrr(¥) = 0, r <M. (13)

Consider
B, = —op0Bpiy — ®n1,1Bnse — SnrpeBnig — 0 — %nsr,rBrirsy + @,
Byyy = By = =0. (14)
Then

fv(-") = Z Bs{Ps T+ Qeg P51 + 0 c‘s~-1.¢—11>0}‘ (15)

=0

We now show that a similar nesting procedure is available for
evaluation of fy(x). It is sufficient to treat the system (10), (11). We have

i) = (By + Byag) pi(x) + B, p{(x) + Byegpy(x) — gy(),

N1
&(x) = Z b p, (%), b = By % + B8, (16)

=0
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and gy{x) 15 readily evalvated using (10)-(12) Thus, let

€, = ~a,Cpy — FuerCarz+bar 8=N—1,N—=2 ,1,0,
Cy=Cpuy =0 {n
Then

SFulw) = (By + Biag) 2f) + Bipy(x) + Bayp(s)
— Copal) = Cufpaf) + copal¥)} %)

The algorthm (10)12) for the evaluation of fy(¥) when p,(x) 15 the
Chebyshey polynomual T,(x) 1s due to Clenshaw (1955) Its importance
lies in the fact that serres of Chebyshey polynomals can be evaluated
m a manner very much hke that a polynomsal Thus the conversion of
a serses of Chebyshev polynomuals ta a0 ordinary palynomual 18 nat
necessary for its evaluation The extension of the Clenshaw procedure
to the calcalation of fy{x) when p,(x) s a polynomal and bas the recur-
rence formula {10) 1s due to Smith (1965) We should Itke to emphastze
that the treatment given here 1s quite general since p,(x) need not be a
polynomal Thus, for example, the algonthm (10)~(12) ss applicable to
sum an expansion m series of Bessel functions

When p,(x) satisfies a three-term tecurrence formula as i (10), we
study the growth of round-off errors i the evaluauon of f(=) by (12)
after the manner of Smith {1965) Let ¢, be the error mtroduced during
the calculation of B, from B,,, and B,,, due to roundmg and snaccu-
racies 1n the coefficients a, , fye; , and g, If the total error i B, 15 £, ,
then

By 4+ By = —\(Boss + Bnis) ~ BasBua t Bniad +aat &, (19)
and 1 view of (11},
En = —0ulnsy — frsifaa + Q@0
Thus £, and B, satisfy the same recurrence system if in (11} we replace
a by, Since £, = Oforn > N, we have
Eapal¥} + Eufifx) + sapolxl} = § expulx) 2n
P=1

So an error mtrodnced at the nth step only contributes an error e, p,{x)
to the final answer and does not increase the errors introduced 1n the
subsequent # steps Notice that the total error m the caleulation of
fu(x) by (12) 1s the same as that obtamned by evaluating fi{x) as the
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sum in (10) when we interpret ¢, as the error in @, . Similar remarks
pertain to the evaluation of fy(x) by the algorithms (16)~(18). An error
analysis for the evaluation of fy(x) by (10)-(12) when p,(x) = T,(x)
has been given by Clenshaw (1955). See Cooper (1967) also.

For the case of expansions in series of Chebyshev polynomials of the
first kind, the algorithms (10)-(12) and (16)-(18) can be summarized
as follows:

N N
fn(x) = Lgo akpk(x)’ fr:r(") = ’Z‘i akp,’c(x),
Pata(®) + 2,Pa(x) + puq(x) = 0. (22)

B, = —a,B,.4 — Bpis + a,, n=NN—1,..,0,

By = Byie =0,

(23)
Cn = _o‘nCn-H, - Cn+2 =+ b, , n=N-—-1,N-2,..,0,
Cy =Cyn =0.
pn(x) ap bn fN(x) f]lv(-\')
Tu(x) —2x —2B,,1 By —aB, —B, — Cy + xCy
Tealx) —2(2x* — 1) —8xB,u By — (2x* — 1)B; —4xB; — C, + (2x* — 1)C,
Tonualx) —2(2¢* — 1) —8xBn. *(Bo — By) By — B, — x(Co — C))

TH)  —2Qx — 1) —4B,y By — (2x— 1B,  —2B, — Gy + (2x — 1),
(24)
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NOTATION INDEX

The system of notation employed to locate specific material lists, in the following order,
chapter, section, and subsection (if any).

EXAMPLE. 2.10.3 means Chapter 1I, tenth section, third subsection. A number in
parentheses refers to an equation.

EXAMPLE. 2.10.3(4) refers to the fourth equation in 2.10.3. An equation number in
parentheses, standing by itself, refers to the equation of the particular section or subsection
in which the reference occurs.

EXAMPLE. A reference to (4) in 2.10.3 means the fourth equation of 2.10.3.

There is much ad hoc notation which is explained 1n the text near where it occurs.
Data of this kind are excluded in the index.

In the listings below, the numbers refer to the equations which define the functions in
accordance with the discussion given above.

A

A, used to denote a certain condition,

5.7(3)

A=4"0,d=4"7,5922)
Aiz), Airy function, 6.2.8(2)
(@ = Ia + k)/I(a), see 2.1(7)

B

B, used to denote a certain condition,
594

B=RB;" B = B, 5.9.2(3, 4)

By = By(0), Bernoulli number, 2.8(5)

B:as(x). generalized Bernoulli polynomial,
2.8(hH)

By(x) = B(x),
2.8(4)

B.(p, q), incomplete beta function, 13.6(1)

Bi(z), Airy function, 6.2.8(3)

B(a, B), beta function, 2.6(1)

ber,(z), bei, (), 6.2.7(47)

Bernoulli  polynomial,

C

C, used to denote a certain condition, 5.7(5)

C,(f’ ~}Fp(x), Gegenbauer or ultraspherical

polynomial, 8.1(27)
C (=), cylinder function, 6.2.7(7)
C(z), Fresnel integral, 6.2.11(39)
Ci(z), cosine integral, 6.2.11(19)
Ci(a, ), 6.2.11(4)

®p
Pos Pe
en(x, k), Jacobi’s elliptic function, 10.5(21)

o =c (p, g+ 1 ] ) 2.11(29)

D
D = dfdz, derivative operator, 2.9(1)

D) = D7), 5.9.2(19)
D,(z), parabolic cylinder function, 6.2.6(5)

E

Ez) = —Ei(—2),
6.2.11(8)

exponential integral,

339



340

E, {xHe) SHD

E,(z) Webers function 62 %7

Ex(x) exponentssl integral 62 11(9)

Erf(s) error function 62 1129}

Extc(z) camplementary ector funcuon
62 11030)

Erfifx) modified errar (unmnn 6211(31)
@y @ @ b by b )= Eo, &, 3)
MacRobert s E-fanction 5 2(20)

E() compiete elbpne mtegeal of the
second fund 62 5(2)

EQ) = B} Q) = E37Q) $92013)

Ely &) incoraplete ell puc wtegrat of the
second kind 10 4(53)

erf(a) error function 62 11(30)

esfe(s) complementary ertor funchion
6211038

F
% Py P2
- o o
oo
hypergeometnc function 3 2(1)
o
Fier ne = R (7))
e
hypergeametnc funcion. 3 2(2)

RACEL

j ) generatized

generalized

Lta g
‘F'(H». a ') h=0 1 g
519)

:p.‘("n;“):) 5128

Fuln #) Coulomb wave function 62 6(2)

Fyu v ©) 313314

Fiu v w) 3133015)

F\(a) extended Jacobs pofynormat 74 11

Fp 4 mcompicte elipuc megra of the
first und 104(43)

Ha b cz) 3704

Ha e ) 44(10)

[
Gyla b c z) ILAY)
Gla ¢ 8 4620
Gyfn ») Coulomb wave fimction 62 6(3)
@ a CA ay)
H.}. 8 .s,)‘ <l { .I.;)

= 67 7(2) Meyer s G function 52(1)

NOTATION INDEX

™ a5 T d
& fe], ) wenf S
Giizla) S7E)

Gla bc 2 31123
Gla c 2) 462(3)
»2(z) 211(28)

£la b ¢ 5) 31125
glabc ) INAE

)

o ¢ 2} 46 KH)
H

H,{x) Hermute polynormat 8 1(34)

H, (=) 5703

H, (&) an sssocuted Bessel function
629(26)

HYG) H®(z) Hankel functons of the

‘rst and second Sinds  respectevely
627(10)

H,(2) Struve function 6 2 9(3)

HU) » v} Hankel wansform 84 1(11)

Sls) 211(28)

hy {3) an sssociated Bessel function,
629(25)

I

L(a B) ncomplete beta function 62 118)

1(2) modified Hessel function of the first
kind 627(2)

s*erfe(z) repeated integral of the comple
mentary exror fitnction 6 2 11(34)

¥
Jf2) Bessel function of the first land,
62702

1,42) Anger s function 62 5(6)
Ja (2} fracrional or repeated ntegral of
A=) 6210(6)

13

K, 2) 5111019

K, fs) fracuonal or sepeated tegra) of
K fz) 155

K[ mot fied Bessel function of the
second kind 62 7(8)
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K(k), complete elliptic integral of the
first kind, 6.2.5(1)

ker,{(z), kei (=), 6.2.7(48)

oo{=), 2.11(25)

L

Loe) L), 511.1(7)

Lf,“)(x), Laguerre polynomial, 8.1(33)
L (=), modificd Struve function, 6.2.9(5)

280 (), 1.4.4(1)
29 (2), 7.4.6(5)

M

M, = Mk(p.q+1l ) 5.11.5(1)

Miwm(z), Whittaker’s confluent
geometric function, 4.9(1)

hyper-

N

N = N}.(p)q

NB = n(n + 2), 7.4.1(2)
nl, factorial function, 2.1(5)

“”), 5.11.5(1)
Pq

o

0O, order symbol, 1,1(1)
o, order symbol, 1,1(2)
p
Py(x), Legendre polynomial, 8.1(28)

22P(), Jacobi polynomial, 8.1(25)
P,}(z), associated 1Legendre function of the
first kind, 6.2.3(1)

Q

0,%(z), associated Legendre function of the
second kind, 6.2.3(2)

R

(1)) .
RP(x), shifted Jacobi polynomial, 8.1(26)
R ) = Ry7(h, 2), 5.9.2(17)

S

S,.(z), Lommel function, 6.2.9(2)

Si(z), sine integral, 6.2.11(19)

Si{«, 2), 6.2.11(4)

S(=), Fresnel integral, 6.2.11(39)

5,,.,(3), Lommel function, 6.2.9(1)

si(z), sine integral, 6.2.11(25)

sn(x, k), Jacobi’s elliptic function, 10.5(18)

T

T,(x), Chebyshev polynomial of the first
kind, 8.1(29)

T*(x), shifted Chebyshev polynomial of
the first kind, 8.1(30)

m,n 1) 1 + Te — 7‘2)
o (~ Lo ) 51
T(2), 3.10(5)
TW, X = Tan(l, ), 5.9.2(18)

U

U.(x), Chebyshev polynomial of the second
kind, 8.1(31)

UXx), shifted Chebyshev polynomial of
the second kind, 8.1(32)

U(z), 3.10(8)

\4
V(z), 3.10(1)
\'
Wi.m(z), Whittaker’s confluent hyper-

geometric function, 4.9(2)

W, (=), function used to represent any of
the Bessel functions of the first three
kinds or the modified Bessel functions
of the first and second kind, 6.2.7(16)

Wiu(=), v(x)}, Wronskian, 6.2.7(26)

W(z), 3.10(3)

Y

Y (=), Bessel function of the second kind,
6.2.7(5)
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Greek Letters

£ & parameter used m connection with JF,
wdenoteg + 1 —p SIS

P18 $1 114

Ita z) complementary mcomplete gamma
function §2 L2

sy gamrara faaron 241

v Euler-Mascheront constant 2 1{14) See
also Chapter XVII Tadle 1 In the
Dtersture thus 1s often referred to as
aunply Buler s constant

¥a 5) wcomplete gamwme function
62.15(1)

&~ '.‘m 4 5901

2D = xddz & denvatwe operater

)
3.. Kronecker delea function 8 1{6)
« a parameter used in connection with

U#) Rernann zeta function 2 10 17}

4 a pacameter used m conmection with
Gh iR todenotedg —3p —m~n+2
EE o))

W =& =8
59214

A s parameter used in connectian with
Jacaby and extended Jacobs polynomuals
todenotea + 8+ 1 821}

» a parameter used i connection with
Gl i redenaeg — 7 —n ST

p & parsmeter used m connection with
Gy to denote m4n—$p+ 9)
5%y

@ a parameter used ;m canaection with
G7 (= 10 denote g — p 57(1)

v 8 parameter used m connection with
Gl e odenotem +n —p SHY)

a ¢ 2) confluent hypergeometric func
ton 44{4)

w; A) ek N Fh N =8)E D
15)
wn - :) confluent hypergeometric func-
tion 427

-m :) w..vn H e n=Fle

¢(:) lcgnmhmm denvative of the gamma
function 2.4(1)

= Q" e =

%) U 59 %Sy

Miuscellaneous Notanons

z=xday t=(-p*
namber % and y real

Fex—ty

R{z) = » = real part of 5

1(z) = y = imaginary part of 7

J2) = absolute vahue of ¥ o — (<* + 30

arg x — argument of ¥ tanfarg 2} = ¥/x

lnz = prioaipal value of the natusal
toganthm of 2

Inz=lnjzl +iags —r<agr<w

2% < % uth In x defined as sbove

(@) = I'a + R F(a) see 2HT)

s a complex

{7} = bomat coeficiene
P e il — m1 210D

1 83 10 A ™ (2) usually means dA()/dzm
eg ¢7(2) = d™H)ik

] = largest integer contawed in x % > 0

(=¥ = (—1" nanwseger o aso

#v § means Cauchy prineipal value of an
integral

~ means asymptotic equality see ! 2(6)
“Thia symbol 1s sometimes used to denote
approximate equality eg w3 14

a, = -1 % 10d (ah = (L () are
frequently used n connection wath
generalized  hypergeometrse  functions
and G-functions

san = B=03
k ’F‘(xw.-r;l‘) ¢
eans to omit the parameter L + p; = g1
when s — Ao lag — ap)® stands for
I 3 (o — e} etc
1
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Miscellancous Notations (cont.)

d as in 6d means six decimals

¢ as in 7s means seven significant figures

The notation x = 0{0.2) 2.0, for example,
is used in connection with the description
of tabular data and means that data are
given for x from 0 to 2.0 in gaps of 0.2

A number in parentheses following a base

numerical number indicates the power
of ten by which the base number is to be
multiplied. In illustration, 2.35786(—3)
means 2.35786 - 103
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The followmg mdex 1 for Volume X onty “ohrne 1 has a comulatrve Subject Index

for both volumes.

A
Auy functions 20§ 217 tee also Bessel

mn Jeast square sense
in mean square sense 268 305
Assocated Bessel funenon, 219
Aspmptotic expansion, sec Chapter 1
17 modifiers such as gamma func
tiom, asmptotc expansion
definmon, 2
clensentary properties, 3 4
Warson 5 leruna, 4-7

B

Banc senies 291
Ber and ber functions, 216
Bernoull and generalized Bernoulls
polvnomuals
definition and  elementary properiies
132
Fourer senes for Bfx) 23
mtegras of 23, 23
recurrenee formulas, 20 22, 35
able of BY (x) 19
of Butxy 20
of B 34
Beraoull numbers
defiion 19
expnson of cotr nny ez and
Incos & @ terwes mveinng 23
able of 20

rgeometne fincoon,
necton wrth, 1°0 135 213

definmons, connectmg

semes, 39 40 232, U3

Cenmanves with fespect o order 3t
ba an odd mieger 216

differencediferenval  propevaes, 48
4

differcanal equavon, 120 214

expansion of exponentul functon
seres of 267

G funcuons, conniection with, 226-233

wtegrals meoleng, 1S 165 177 219
220 287

function
complete 15 16 18

incoenplete 210
Beta transform 58 59 170-175 236
Binomual cocficent 9 35
Bunomual function, 35 4D 49 09 210

<

Chebyshes best approumanon m sefise
of 303
‘polypoumals of first kind, see
also Jacotn polynomuts
AppTSEatre W seras o (ased on

k]
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orthogonality properties with respect
to summatton), 308-312
defimtion and basic properties, 273, 296,
297, 300, 301
difference-differential  properties,
299, 301, 302, 316, 321, 324
evaluation of series of, by use of bach-
ward recurrence formula, 325-329
evpanstons 1n series of (based on ortho-
gonality property with respect to
integration)
asymptotic  estimate of coefficients
293-296
evaluation of coefficients, 286-293
differentinl and integral properties,
314-325
evpansion of A" T,(a) 1n senes of, 298
of v\ T%(1) 1n series of, 301
of a F, mn series of, 296

297~

mtegrals  involving, 293-295, 299,
300-302, 316-325

Jacobt polynomual, connection with,
273, 296

minmmas and mean square properties,
303-307

orthogonality property with respect to
integration, 273, 299, 301
summation, 307, 310, 311
Chebyshev polynomials of second kind, see
alse Jacobt polynomuals
approximations in sertes of (based on
orthogonality properties with respect
to summatton), 312-314
defimtion and basic properties, 273,
296-300
integrals mvohing, 299, 300
Jacobi polvnomial, connection with, 273
orthogonahitv property with respect to
mtegration, 299
summation, 312, 313
Chnstoffel-Darboun formulas, 272
Confluence principle and theorems, 48-57
Confluent hypergeometric function, see
Hy pergeometric function (confluent)
Cosine, 23, 39, 210
Cosecant, 23, 210
Cosine tegral, 135, 221-223, 227
Cotangent, 23
Coulomb wave functions, 135, 212
Cilinder function, 204, 213

D

D Operator, 24-26

Darbouy, method of generating functions,
254-259

Delta (8) operator, 24-26

Difference equations, use of in backward
direction, 317-319, 325-329

Divon’s theorem, 103, 104

E

E-Function, 148

Elliptic integrals, 211

Error functions, 135, 223, 224

Euler-Mascheron: constant, y, 9

Expansions, see also particular functions

evaluation of|, 1n series of functions where

functions satisfy a linear finite
difference equation, 325-329

Exponential function, 38, 40, 48, 209, 287,

288
Exponential integral, 3, 7, 135, 221, 222

F
Fresnel integrals, 135, 224, 227

G

G-Function, see Chapter V, 135-208
analytic continuation, 148, 149, 194
asymptotic expansion

exponential, recurrence formula for
coeffictents 1n, 200, 202, 205-208
large variable, 178~180, 189-194
definition, 139, 142-145
differential equation and solutions, 181,
182
elementary properties, 149-152
evpansion of in series of
G-functions, 147, 148,
183-189
generalized hypergeometric func-
tions, 139, 142, 145-147
hypergeometric functions and named
functions, connection with, 225-234
integral representations, 59, 143-145,
159, 164-175, 177
integrals 1nvolving
Euler and related transforms, 170-177

152-157,
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Founer transform 166 169

Laplace and mverse Laplace trans
forma 166-163

Mell 0 and smverse Melkin transforms
157 153

other sramsform pars 177
product of two G funcuons 159-166
sult plicstion theorems 152 157
nemed funchions expressed 1 terms of
225 230

Gamnma functon see Chaptes 11 8-37
Incomplete gamma funct on
analyne contnuanon 16 11
Ot eTpAnSIOn
T(z) and In I(z) 3133
satin of products of gamma funcuons
13 37

recurrence formuta fat coefficients ;m
asymptoc expanmion for sato
af products of gamma functions
205-208

definste wtegrals expressed 1n terms of
15 16 60 6 157 177

defintion and elementary properes
&-10

expansion far £(z) and In D)  seqes
of Chebyshev polynaruals of first
lund 28 29

integral representations § 14-18

loganichmue dervative of seePst function

muls pheatton formoula 11 12

power secies and othex expans ons, 26-31

Gegenbauer polynomeal 273 219

H

H Transform 165
Hankel funcuons 135 204 213 215 210

Hankel transform 165 287

Hermite polynoruals 135 273

Hypergeometne funcrion (confluent) o,
yofunction Whittaker funcrions see
Chapter IV 1i5-134 G-Funition
Hypergeometric function (Gaussian}
+F, Hypergeometnic function (gener
alized) oF, Incomplete gamma
function and related functions

asymptotie expansion

large parsmeter(s) 128 133 134

farge vamable 127 123
confluence principle 48
contiguous relat onx 45 118 119 126
defmton 40 A7 49
drfference-differential  properres 48
M7 119 325 126
differentisd equation 119 3120
sofutions
complete 121 124
degenerate 120 121

elementary relations 117 118

evilustion of eertai P, for speaaal
value of argement, 113

expansion in series of Bessel funcrons
129133

expressed as named functon 224

Gifunction coninection with 225 126
28 731 234

wtegral representat ons 115 117

Kusamer relations 121 124126

nemed functions expressed m terms of
21 23 720713

other notations and selated funcuons
134 135

peaduces 201 28 231 234

Wironskians 124

Hygergeometnc funcuon (Guussar) 4F,

se Chapter 1L 38114 Hypergeome
etme funchon (generalued) F,
analytee connauation 68-71
asymptote expensions foc large paca
meter(s) 233-242
confluence principle 49
cont guous relatians 47 §9
convergence of seces 65 68
defirmean 39 4t
difference diffevential properties 4447
88 275 276
ifferennial equation 64 93
solutions
complete 65 72-84
degenerate 65 65 69 77-84
togarthmic 7
ordinary 6¢ 65 67 71
elementary relatons 44-46
evaluation of for specl valyes of
argument 99 103 114
expansion in senes of \Fys 130
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expressed as named function, 224
G-function, connection with, 139
integrals involving, 170, 172-174
integral representations, 57, 58, 62, 63,
89-91
Kummer relations, 67, 68, 85-92
named functions expressed in terms of,
209-211
polynomial, 40
quadratic transformations, 92-98
truncated series, 42, 109, 110
Wronskians, 84
Hypergeometric function (generalized),
oFe, see Chapters III (38-114), IV
(115-134), V (135-208); G-functions;
special cases of ,F,
analytic continuation, 149
asymptotic expansion
exponential, recurrence formula for
cocfficients in, 200, 202, 205-208
large parameter(s), 51, 55, 56, 133,
242~266
large variable, 195-203
confluence principle and theorems, 49,
51, 53-56
contiguous relations, 48
convergence of series, 43, 44
definition, 41, 42, 136
difference-differential properties, 44, 48
differential equation, 136~138, 247
solutions
complete, 147, 148
logarithmic, 140-143
ordinary, 137-139
elementary relations, 44
evaluation of certain ,F, for special
values of argument, 113
evaluation of ,,;F, for special values
of argument
general p, 26, 113, 114, 257-259
p =3, 112-114
P = 2, 103-111, 113, 259
P =199 101, 102, 114
cxpansion in series of Chebyshev
polynomials of first kind, 296
expansion theorem for large parameter,
51, 55, 56
expressed as named function, 224, 225
G-function, connection with, 139, 142,
145-147, 225, 230, 231

integral representations, 58-63

integrals involving, 58-62, 164, 168, 169

multiplication theorem, 155

named functions expressed in terms of,
209-224

nearly poised, 103

polynomial, 42

truncated series, 42, 210

well poised, 103, 104

I

Incomplete gamma function and related
functions, 38, 40, 135, 220-224
Integrals, see appropriate modifiers such

as Bessel functions, integrals involving

Jacobi function, 274
Jacobi polynomials
asymptotic expansion for large order,
53, 54, 237, 250-259, 278, 279
Bessel function, connection with, 52
definition and basic properties, 273-
275, 280
difference-differential properties, 275,
276
expansion of functions in series of,
283-286, 290-293
of »° in series of, 277, 284, 285, 291
of x“e** in series of, 285, 287
extended and generalized
asymptotic expansion for large order,
53, 54, 247-263, 281-283
definition, 247
expansion of functions in series of, 291
generating function, 254
evaluation and estimation of coefficients
of given f(x) when expanded in
series of, 286-296
asymptotic estimates of coefficients,
293
coefficients
as integral transform, 286-290
when f(x) is defined by Taylor
series, 290-293
generating functions, 254, 278
inequalities, 280
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amtegrals mvolving 276-277 281 282,286

orthogonal polynomuals connection with
other 273

orthogonality property 276

X

K Transform, 165

humme s solutions 67

L

Laguerre polynom at
asymptotic expanson fos large order
264-265

definmon and orthoganshty properry
2]

expansion of funcuons n series of 291
22

generzhized and extended
wsymmptotic espans on for targe order
263-266
defimnion 263
expans on of functions 10 senies of
291 292
Jacoln polymomual connection with 273
Legendre functions 378 211

SUBJECT INDEX

o

Order symbols 1
Orthogonal functions 267 270
Orthogonal polynomuals sce Chapter VIIT
767 329 Jacab polymorauals, Cheby
shev pol
oss 2t onthogonal properves of 213
definition and bas c propertics 267 272

P

Parabolic cybinder funcuons 135 212
P () asymp otic expansion for 35 36
Polynomuals, see modifiers such as Bessel
orthogonat
g-functon see Hypergeometae function
{confluent) F -finction Whivta
ker funct ons
Pai ($)-funcrion or loganthmzc denvative
of the gamma funcrion
asymptotic expans on, 33
definuon and elementary prapertes
12,13
expunsion i senes of Chebyshev
polynomuals of the first kind 28 29
ntegral representations, 13-15 28
power ser es expans on

R

Recurrence formulas use of n backward
irecuon, 317 319 325-329

Lomocl funcyons 217 227 234 s
- Sastschiitz s formuls 103
Siwe 19 210
erse of 210
Mebler transforms 178 Sone mmtegred 135 231 23 227
Stokes phenomenon 128 199
Stru ¢ fanctions
N asymptotic expans on 219
defioution 207
Named s Gt Eerenee

! properties 218
expressed as G-funchon, 227 233
integrals mvol g 165 220
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T

Tangent, 23
inverse of or arc tan, 38, 40, 210

U
Ultraspherical polynomial, 273, 279

v

Vandermonde’s theorem, 99

w

Watson's formula, 104
Watson’s lemma, 4-7

Weber function, 218

Whipple's formula, 104

‘Whittaker functions, see also Hyper-

geometric function, confluent
definition, 134
expressed as G-function, 225, 226, 228,
231, 233, 234
Wronskians, 84, 124

Y

Y-Transform, 165

A

Zeta-function (Riemann), 27
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